Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar
Abstract
1. Introduction
2. Pollutant Transport by Shallow Water Flow
3. Numerical Solution by Meshless Method
3.1. Formulation of the Local RBF Differentiation
3.2. Numerical Procedure
3.3. Hyperviscosity-Based LRBF Stabilization
4. Numerical Results
4.1. Numerical Demonstration of C-Property
4.2. Circular Dam Break Problem
4.3. Pollutant Advection in a Uniform Flow Field
4.4. Pollutant Transport in the Strait of Gibraltar
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aizinger, V.; Dawson, C. A discontinuous Galerkin method for two-dimensional flow and transport in shallow water. Adv. Water Resour. 2002, 25, 67–84. [Google Scholar] [CrossRef]
- Benkhaldoun, F.; Elmahi, I.; Seaı, M. Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes. J. Comput. Phys. 2007, 226, 180–203. [Google Scholar] [CrossRef][Green Version]
- Vanzo, D.; Siviglia, A.; Toro, E.F. Pollutant transport by shallow water equations on unstructured meshes: Hyperbolization of the model and numerical solution via a novel flux splitting scheme. J. Comput. Phys. 2016, 311, 1–20. [Google Scholar] [CrossRef]
- Bouchut, F. Efficient numerical finite volume schemes for shallow water models. Ed. Ser. Adv. Nonlinear Sci. Complex. 2007, 2, 189–256. [Google Scholar]
- Hanert, E.; Legat, V.; Deleersnijder, E. A comparison of three finite elements to solve the linear shallow water equations. Ocean Model. 2003, 5, 17–35. [Google Scholar] [CrossRef]
- Lundgren, L.; Mattsson, K. An efficient finite difference method for the shallow water equations. J. Comput. Phys. 2020, 422, 109784. [Google Scholar] [CrossRef]
- Arifeen, S.U.; Haq, S.; Ghafoor, A.; Ullah, A.; Kumam, P.; Chaipanya, P. Numerical solutions of higher order boundary value problems via wavelet approach. Adv. Differ. Equ. 2021, 2021, 347. [Google Scholar] [CrossRef]
- Hussain, Z.; Khan, S.; Ullah, A.; Ayaz, M.; Ahmad, I.; Mashwani, W.K.; Chu, Y.M. Extension of optimal homotopy asymptotic method with use of Daftardar–Jeffery polynomials to Hirota–Satsuma coupled system of Korteweg–de Vries equations. Open Phys. 2020, 18, 916–924. [Google Scholar] [CrossRef]
- Shah, Z.; Kumam, P.; Ullah, A.; Khan, S.N.; Selim, M.M. Mesoscopic Simulation for Magnetized Nanofluid Flow within a Permeable 3D Tank. IEEE 2021, 9, 135234–135244. [Google Scholar] [CrossRef]
- Roe, P.L. Characteristic-based schemes for the euler equations. Annu. Rev. Fluid Mech. 1986, 18, 337–365. [Google Scholar] [CrossRef]
- Chen, S.; Yan, C.; Lou, S.; Lin, B. An improved entropy-consistent euler flux in low mach number. J. Comput. Sci. 2018, 27, 271–283. [Google Scholar] [CrossRef]
- Alcrudo, F.; Garcia-Navarro, P. A high-resolution godunov-type scheme in finite volumes for the 2d shallow-water equations. Int. J. Numer. Methods Fluids 1993, 16, 489–505. [Google Scholar] [CrossRef]
- Zhao, F.; Pan, L.; Wang, S. Weighted essentially non-oscillatory scheme on unstructured quadrilateral and triangular meshes for hyperbolic conservation laws. J. Comput. Phys. 2018, 374, 605–624. [Google Scholar] [CrossRef]
- Shu, C.W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations; Quarteroni, A., Ed.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1697, pp. 325–432. [Google Scholar]
- Caleffi, V.; Valiani, A.; Bernini, A. High-order balanced cweno scheme for movable bed shallow water equations. Adv. Water Resour. 2007, 30, 730–741. [Google Scholar] [CrossRef]
- Clain, S.; Diot, S.; Loubère, R. A high-order finite volume method for systems of conservation laws—Multi-dimensional optimal order detection (mood). J. Comput. Phys. 2011, 230, 4028–4050. [Google Scholar] [CrossRef]
- Diot, S.; Clain, S.; Loubère, R. Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials. Comput. Fluids 2012, 64, 43–63. [Google Scholar] [CrossRef]
- Diot, S.; Loubère, R.; Clain, S. The multidimensional optimal order detection method in the three-dimensional case: Very high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 2013, 73, 362–392. [Google Scholar] [CrossRef]
- Kansa, E.J. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. Appl. 1990, 19, 127–145. [Google Scholar] [CrossRef]
- Yao, G.; Kolibal, J.; Chen, C.S. A localized approach for the method of approximate particular solutions. Comput. Math. Appl. 2011, 61, 2376–2387. [Google Scholar] [CrossRef]
- Sarra, S. A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl. Math. Comput. 2012, 218, 9853–9865. [Google Scholar] [CrossRef]
- Tabbakh, Z.; Seaid, M.; Ellaia, R.; Ouazar, D.; Benkhaldoun, F. A local radial basis function projection method for incompressible flows in water eutrophication. Eng. Anal. Bound. Elem. 2019, 106, 528–540. [Google Scholar] [CrossRef]
- Kesserwani, G.; Liang, Q. Locally limited and fully conserved rkdg2 shallow water solutions with wetting and drying. J. Sci. Comput. 2012, 50, 120–144. [Google Scholar] [CrossRef]
- Chaabelasri, E. Numerical simulation of dam break flows using a radial basis function meshless method with artificial viscosity. Model. Simul. Eng. 2018, 2018, 4245658. [Google Scholar] [CrossRef]
- Fornberg, B.; Lehto, E. Stabilization of rbf-generated finite difference methods for convective pdes. J. Comput. Phys. 2011, 230, 2270–2285. [Google Scholar] [CrossRef]
- Flyer, N.; Lehto, E.; Blaise, S.; Wright, G.B.; St-Cyr, A. A guide to rbf-generated finite differences for nonlinear transport: Shallow water simulations on a sphere. J. Comput. Phys. 2012, 231, 4078–4095. [Google Scholar] [CrossRef]
- Dehghan, M.; Abbaszadeh, M. The use of proper orthogonal decomposition (pod) meshless rbf-fd technique to simulate the shallow water equations. J. Comput. Phys. 2017, 351, 478–510. [Google Scholar] [CrossRef]
- Flyer, N.; Barnett, G.A.; Wicker, L.J. Enhancing finite differences with radial basis functions: Experiments on the navier–stokes equations. J. Comput. Phys. 2016, 316, 39–62. [Google Scholar] [CrossRef]
- Bermudez, A.; Vazquez, M.E. Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 1994, 23, 1049–1071. [Google Scholar] [CrossRef]
- Amiri, S.M.; Talebbeydokhti, N.; Baghlani, A. A two-dimensional well-balanced numerical model for shallow water equations. Sci. Iran. 2013, 20, 97–107. [Google Scholar] [CrossRef]
- Touma, R.; Kanbar, F. Well-balanced central schemes for two-dimensional systems of shallow water equations with wet and dry states. Appl. Math. Model. 2018, 62, 728–750. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, J.; Zhao, N. A new fifth-order finite difference well-balanced multi-resolution WENO scheme for solving shallow water equations. Comput. Math. Appl. 2020, 80, 1387–1404. [Google Scholar] [CrossRef]
- Chaabelasri, E.; Jeyar, M. Salhi, N.; Elmahi, I. A simple unstructured finite volume scheme for solving shallow water equations with wet/dry interface. Int. J. Mech. Eng. Technol. 2019, 10, 1849–1861. [Google Scholar]
- González, C.J.; Reyes, E.; Álvarez, O.; Izquierdo, A.; Bruno, M.; Mañanes, R. Surface currents and transport processes in the strait of gibraltar: Implications for modeling and management of pollutant spills. Ocean. Coast. Manag. 2019, 179, 104869. [Google Scholar] [CrossRef]
- Periáñez, R.; Pascual-Granged, A. Modelling surface radioactive, chemical and oil spills in the strait of gibraltar. Comput. Geosci. 2008, 34, 163–180. [Google Scholar] [CrossRef]
- Banda, M.K.; Seaïd, M.; Thömmes, G. Lattice boltzmann simulation of dispersion in two-dimensional tidal flows. Int. J. Numer. Methods Eng. 2009, 77, 878–900. [Google Scholar] [CrossRef]
- Benkhaldoun, F.; Elmahi, I.; Seaïd, M. Application of mesh-adaptation for pollutant transport by water flow. Math. Comput. Simul. 2009, 79, 3415–3423. [Google Scholar] [CrossRef]
- Talbi, H.; Chaabelasri, E.; Jeyar, M.; Salhi, N. Random walk particle tracking for convection-diffusion dominated problems in shallow water flows. J. Appl. Comput. Mech. 2021, 7, 486–495. [Google Scholar]
6 s | 12 s | 20 s | ||||
---|---|---|---|---|---|---|
-Error | RMS Error | -Error | RMS Error | -Error | RMS Error | |
Roe-MUSCL | ||||||
LRBF |
# of Points | 7690 |
---|---|
Wind speed | Calm |
10−2 m/s | |
20 Km, 20 Km | |
Manning coefficient | 10−2 s/m1/3 |
Time step | 0.75 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Nuwairan, M.; Chaabelasri, E. Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar. Appl. Sci. 2022, 12, 6849. https://doi.org/10.3390/app12146849
Al Nuwairan M, Chaabelasri E. Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar. Applied Sciences. 2022; 12(14):6849. https://doi.org/10.3390/app12146849
Chicago/Turabian StyleAl Nuwairan, Muneerah, and Elmiloud Chaabelasri. 2022. "Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar" Applied Sciences 12, no. 14: 6849. https://doi.org/10.3390/app12146849
APA StyleAl Nuwairan, M., & Chaabelasri, E. (2022). Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar. Applied Sciences, 12(14), 6849. https://doi.org/10.3390/app12146849