Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar
Abstract
:1. Introduction
2. Pollutant Transport by Shallow Water Flow
3. Numerical Solution by Meshless Method
3.1. Formulation of the Local RBF Differentiation
3.2. Numerical Procedure
3.3. Hyperviscosity-Based LRBF Stabilization
4. Numerical Results
4.1. Numerical Demonstration of C-Property
4.2. Circular Dam Break Problem
4.3. Pollutant Advection in a Uniform Flow Field
4.4. Pollutant Transport in the Strait of Gibraltar
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aizinger, V.; Dawson, C. A discontinuous Galerkin method for two-dimensional flow and transport in shallow water. Adv. Water Resour. 2002, 25, 67–84. [Google Scholar] [CrossRef]
- Benkhaldoun, F.; Elmahi, I.; Seaı, M. Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes. J. Comput. Phys. 2007, 226, 180–203. [Google Scholar] [CrossRef] [Green Version]
- Vanzo, D.; Siviglia, A.; Toro, E.F. Pollutant transport by shallow water equations on unstructured meshes: Hyperbolization of the model and numerical solution via a novel flux splitting scheme. J. Comput. Phys. 2016, 311, 1–20. [Google Scholar] [CrossRef]
- Bouchut, F. Efficient numerical finite volume schemes for shallow water models. Ed. Ser. Adv. Nonlinear Sci. Complex. 2007, 2, 189–256. [Google Scholar]
- Hanert, E.; Legat, V.; Deleersnijder, E. A comparison of three finite elements to solve the linear shallow water equations. Ocean Model. 2003, 5, 17–35. [Google Scholar] [CrossRef]
- Lundgren, L.; Mattsson, K. An efficient finite difference method for the shallow water equations. J. Comput. Phys. 2020, 422, 109784. [Google Scholar] [CrossRef]
- Arifeen, S.U.; Haq, S.; Ghafoor, A.; Ullah, A.; Kumam, P.; Chaipanya, P. Numerical solutions of higher order boundary value problems via wavelet approach. Adv. Differ. Equ. 2021, 2021, 347. [Google Scholar] [CrossRef]
- Hussain, Z.; Khan, S.; Ullah, A.; Ayaz, M.; Ahmad, I.; Mashwani, W.K.; Chu, Y.M. Extension of optimal homotopy asymptotic method with use of Daftardar–Jeffery polynomials to Hirota–Satsuma coupled system of Korteweg–de Vries equations. Open Phys. 2020, 18, 916–924. [Google Scholar] [CrossRef]
- Shah, Z.; Kumam, P.; Ullah, A.; Khan, S.N.; Selim, M.M. Mesoscopic Simulation for Magnetized Nanofluid Flow within a Permeable 3D Tank. IEEE 2021, 9, 135234–135244. [Google Scholar] [CrossRef]
- Roe, P.L. Characteristic-based schemes for the euler equations. Annu. Rev. Fluid Mech. 1986, 18, 337–365. [Google Scholar] [CrossRef]
- Chen, S.; Yan, C.; Lou, S.; Lin, B. An improved entropy-consistent euler flux in low mach number. J. Comput. Sci. 2018, 27, 271–283. [Google Scholar] [CrossRef]
- Alcrudo, F.; Garcia-Navarro, P. A high-resolution godunov-type scheme in finite volumes for the 2d shallow-water equations. Int. J. Numer. Methods Fluids 1993, 16, 489–505. [Google Scholar] [CrossRef]
- Zhao, F.; Pan, L.; Wang, S. Weighted essentially non-oscillatory scheme on unstructured quadrilateral and triangular meshes for hyperbolic conservation laws. J. Comput. Phys. 2018, 374, 605–624. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations; Quarteroni, A., Ed.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1697, pp. 325–432. [Google Scholar]
- Caleffi, V.; Valiani, A.; Bernini, A. High-order balanced cweno scheme for movable bed shallow water equations. Adv. Water Resour. 2007, 30, 730–741. [Google Scholar] [CrossRef]
- Clain, S.; Diot, S.; Loubère, R. A high-order finite volume method for systems of conservation laws—Multi-dimensional optimal order detection (mood). J. Comput. Phys. 2011, 230, 4028–4050. [Google Scholar] [CrossRef] [Green Version]
- Diot, S.; Clain, S.; Loubère, R. Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials. Comput. Fluids 2012, 64, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Diot, S.; Loubère, R.; Clain, S. The multidimensional optimal order detection method in the three-dimensional case: Very high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 2013, 73, 362–392. [Google Scholar] [CrossRef]
- Kansa, E.J. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. Appl. 1990, 19, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Yao, G.; Kolibal, J.; Chen, C.S. A localized approach for the method of approximate particular solutions. Comput. Math. Appl. 2011, 61, 2376–2387. [Google Scholar] [CrossRef] [Green Version]
- Sarra, S. A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl. Math. Comput. 2012, 218, 9853–9865. [Google Scholar] [CrossRef] [Green Version]
- Tabbakh, Z.; Seaid, M.; Ellaia, R.; Ouazar, D.; Benkhaldoun, F. A local radial basis function projection method for incompressible flows in water eutrophication. Eng. Anal. Bound. Elem. 2019, 106, 528–540. [Google Scholar] [CrossRef]
- Kesserwani, G.; Liang, Q. Locally limited and fully conserved rkdg2 shallow water solutions with wetting and drying. J. Sci. Comput. 2012, 50, 120–144. [Google Scholar] [CrossRef] [Green Version]
- Chaabelasri, E. Numerical simulation of dam break flows using a radial basis function meshless method with artificial viscosity. Model. Simul. Eng. 2018, 2018, 4245658. [Google Scholar] [CrossRef] [Green Version]
- Fornberg, B.; Lehto, E. Stabilization of rbf-generated finite difference methods for convective pdes. J. Comput. Phys. 2011, 230, 2270–2285. [Google Scholar] [CrossRef]
- Flyer, N.; Lehto, E.; Blaise, S.; Wright, G.B.; St-Cyr, A. A guide to rbf-generated finite differences for nonlinear transport: Shallow water simulations on a sphere. J. Comput. Phys. 2012, 231, 4078–4095. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Abbaszadeh, M. The use of proper orthogonal decomposition (pod) meshless rbf-fd technique to simulate the shallow water equations. J. Comput. Phys. 2017, 351, 478–510. [Google Scholar] [CrossRef]
- Flyer, N.; Barnett, G.A.; Wicker, L.J. Enhancing finite differences with radial basis functions: Experiments on the navier–stokes equations. J. Comput. Phys. 2016, 316, 39–62. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, A.; Vazquez, M.E. Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 1994, 23, 1049–1071. [Google Scholar] [CrossRef]
- Amiri, S.M.; Talebbeydokhti, N.; Baghlani, A. A two-dimensional well-balanced numerical model for shallow water equations. Sci. Iran. 2013, 20, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Touma, R.; Kanbar, F. Well-balanced central schemes for two-dimensional systems of shallow water equations with wet and dry states. Appl. Math. Model. 2018, 62, 728–750. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, J.; Zhao, N. A new fifth-order finite difference well-balanced multi-resolution WENO scheme for solving shallow water equations. Comput. Math. Appl. 2020, 80, 1387–1404. [Google Scholar] [CrossRef]
- Chaabelasri, E.; Jeyar, M. Salhi, N.; Elmahi, I. A simple unstructured finite volume scheme for solving shallow water equations with wet/dry interface. Int. J. Mech. Eng. Technol. 2019, 10, 1849–1861. [Google Scholar]
- González, C.J.; Reyes, E.; Álvarez, O.; Izquierdo, A.; Bruno, M.; Mañanes, R. Surface currents and transport processes in the strait of gibraltar: Implications for modeling and management of pollutant spills. Ocean. Coast. Manag. 2019, 179, 104869. [Google Scholar] [CrossRef]
- Periáñez, R.; Pascual-Granged, A. Modelling surface radioactive, chemical and oil spills in the strait of gibraltar. Comput. Geosci. 2008, 34, 163–180. [Google Scholar] [CrossRef]
- Banda, M.K.; Seaïd, M.; Thömmes, G. Lattice boltzmann simulation of dispersion in two-dimensional tidal flows. Int. J. Numer. Methods Eng. 2009, 77, 878–900. [Google Scholar] [CrossRef]
- Benkhaldoun, F.; Elmahi, I.; Seaïd, M. Application of mesh-adaptation for pollutant transport by water flow. Math. Comput. Simul. 2009, 79, 3415–3423. [Google Scholar] [CrossRef]
- Talbi, H.; Chaabelasri, E.; Jeyar, M.; Salhi, N. Random walk particle tracking for convection-diffusion dominated problems in shallow water flows. J. Appl. Comput. Mech. 2021, 7, 486–495. [Google Scholar]
6 s | 12 s | 20 s | ||||
---|---|---|---|---|---|---|
-Error | RMS Error | -Error | RMS Error | -Error | RMS Error | |
Roe-MUSCL | ||||||
LRBF |
# of Points | 7690 |
---|---|
Wind speed | Calm |
10−2 m/s | |
20 Km, 20 Km | |
Manning coefficient | 10−2 s/m1/3 |
Time step | 0.75 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Nuwairan, M.; Chaabelasri, E. Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar. Appl. Sci. 2022, 12, 6849. https://doi.org/10.3390/app12146849
Al Nuwairan M, Chaabelasri E. Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar. Applied Sciences. 2022; 12(14):6849. https://doi.org/10.3390/app12146849
Chicago/Turabian StyleAl Nuwairan, Muneerah, and Elmiloud Chaabelasri. 2022. "Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar" Applied Sciences 12, no. 14: 6849. https://doi.org/10.3390/app12146849
APA StyleAl Nuwairan, M., & Chaabelasri, E. (2022). Balanced Meshless Method for Numerical Simulation of Pollutant Transport by Shallow Water Flow over Irregular Bed: Application in the Strait of Gibraltar. Applied Sciences, 12(14), 6849. https://doi.org/10.3390/app12146849