Promise for Personalized Diagnosis? Assessing the Precision of Wireless Consumer-Grade Electroencephalography across Mental States
Abstract
:1. Introduction
1.1. Emotiv EPOC Wireless EEG Device in Context: Current Research and Applications
1.2. The Present Study
1.2.1. EEG Features: Event-Related Band Power and Amplitude
1.2.2. Definition of Low vs. High Mental States
1.2.3. Hypothesis and Predictions
2. Materials and Methods
2.1. Sample and Data Re-Analysis Approach
2.2. Electrophysiological Measures
2.3. IAPS and ANEW Procedures
2.4. n-Back Procedures
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, S.J.M. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005, 76, ii2–ii7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasiljevic, G.A.M.; De Miranda, L.C. Brain–Computer Interface Games Based on Consumer-Grade EEG Devices: A Systematic Literature Review. Int. J. Hum. Comput. Interact. 2019, 36, 105–142. [Google Scholar] [CrossRef]
- TajDini, M.; Sokolov, V.; Kuzminykh, I.; Shiaeles, S.; Ghita, B. Wireless Sensors for Brain Activity—A Survey. Electronics 2020, 9, 2092. [Google Scholar] [CrossRef]
- Barngrover, C.; Althoff, A.; DeGuzman, P.; Kastner, R. A Brain–Computer Interface (BCI) for the Detection of Mine-Like Objects in Sidescan Sonar Imagery. IEEE J. Ocean. Eng. 2015, 41, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Ganga, R.C.; Vijayakumar, P.; Badrinath, P.; Singh, A.R.; Singh, M. Drone control using EEG signal. J. Adv. Res. Dyn. Control Syst. 2019, 11, 2107–2113. [Google Scholar]
- Munyon, C.N. Neuroethics of Non-primary Brain Computer Interface: Focus on Potential Military Applications. Front. Neurosci. 2018, 12, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binnendijk, A.; Marler, T.; Bartels, E.M. Brain-Computer Interfaces: U.S. Military Applications and Implications, An Initial Assessment; RAND Corporation: Santa Monica, CA, USA, 2020. [Google Scholar] [CrossRef]
- Czech, A. Brain-Computer Interface Use to Control Military Weapons and Tools. In Control, Computer Engineering and Neuroscience; Springer: Berlin/Heidelberg, Germany, 2021; pp. 196–204. [Google Scholar] [CrossRef]
- Hernandez-Cuevas, B.; Egbert, W.; Denham, A.; Mehul, A.; Crawford, C.S. Changing Minds: Exploring Brain-Computer Interface Experiences with High School Students. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar] [CrossRef]
- Gnedykh, D. Trends and Prospects of Using Brain-Computer Interfaces in Education. Sib. Psikhologicheskiy Zhurnal 2021, 108–129. [Google Scholar] [CrossRef] [PubMed]
- Papanastasiou, G.; Drigas, A.; Skianis, C.; Lytras, M. Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon 2020, 6. [Google Scholar] [CrossRef]
- Rohani, D.A.; Puthusserypady, S. BCI inside a virtual reality classroom: A potential training tool for attention. EPJ Nonlinear Biomed. Phys. 2015, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.-H.; Chiang, C.-Y.; Chu, H.-C. Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors. Sensors 2013, 13, 10273–10286. [Google Scholar] [CrossRef]
- Thomas, K.P.; Vinod, A.P.; Guan, C. Enhancement of attention and cognitive skills using EEG based neurofeedback game. In Proceedings of the 2013 6th International IEEE/EMBS Conference, San Diego, CA, USA, 6–8 November 2013; pp. 21–24. [Google Scholar] [CrossRef]
- Vinod, A.P.; Thomas, K.P. Neurofeedback Games Using EEG-Based Brain–Computer Interface Technology; The Institution of Engineering and Technology: London, UK, 2018; pp. 301–329. [Google Scholar] [CrossRef]
- Sekhavat, Y.A. Battle of minds: A new interaction approach in BCI games through competitive reinforcement. Multimedia Tools Appl. 2019, 79, 3449–3464. [Google Scholar] [CrossRef]
- Paszkiel, S. Using BCI and VR Technology in Neurogaming. In Signal Processing and Machine Learning for Brain-Machine Interfaces; Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–99. [Google Scholar] [CrossRef]
- Marshall, D.; Coyle, D.; Wilson, S.; Callaghan, M. Games, Gameplay, and BCI: The State of the Art. IEEE Trans. Comput. Intell. AI Games 2013, 5, 82–99. [Google Scholar] [CrossRef]
- Bos, D.P.; Obbink, M.; Nijholt, A.; Hakvoort, G.; Christian, M. Towards multiplayer BCI games. In Proceedings of the Workshop on Multiuser and Social Biosignal Adaptive Games and Playful Applications, BioS-Play, 2010; Available online: http://www.physiologicalcomputing.net/workshops/biosplay2010/BioSPlay_Gurkok%20et%20al%20(Multiplayer%20BCI).pdf (accessed on 20 May 2022).
- Sawangjai, P.; Hompoonsup, S.; Leelaarporn, P.; Kongwudhikunakorn, S.; Wilaiprasitporn, T. Consumer Grade EEG Measuring Sensors as Research Tools: A Review. IEEE Sens. J. 2019, 20, 3996–4024. [Google Scholar] [CrossRef]
- Buchanan, D.M.; Grant, J.; D'Angiulli, A. Commercial wireless versus standard stationary EEG systems for personalized emotional brain-computer interfaces: A preliminary reliability check. Neurosci. Res. Notes 2019, 2, 7–15. [Google Scholar] [CrossRef]
- Maskeliunas, R.; Damasevicius, R.; Martisius, I.; Vasiljevas, M. Consumer grade EEG devices: Are they usable for control tasks? PeerJ 2016, 4, e1746. [Google Scholar] [CrossRef]
- Nijboer, F.; Van De Laar, B.; Gerritsen, S.; Nijholt, A.; Poel, M. Usability of Three Electroencephalogram Headsets for Brain–Computer Interfaces: A Within Subject Comparison. Interact. Comput. 2015, 27, 500–511. [Google Scholar] [CrossRef] [Green Version]
- Duvinage, M.; Castermans, T.; Petieau, M.; Hoellinger, T.; Cheron, G.; Dutoit, T. Performance of the Emotiv Epoc headset for P300-based applications. Biomed. Eng. Online 2013, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Duvinage, M.; Castermans, T.; Dutoit, T.; Petieau, M.; Hoellinger, T.; De Saedeleer, C.; Seetharaman, K.; Cheron, G. A P300-based Quantitative Comparison between the Emotiv Epoc Headset and a Medical EEG Device. In BioMedical Engineering OnLine; Springer Nature: Berlin, Germany, 2012. [Google Scholar] [CrossRef] [Green Version]
- Barham, M.P.; Clark, G.M.; Hayden, M.J.; Enticott, P.; Conduit, R.; Lum, J. Acquiring research-grade ERPs on a shoestring budget: A comparison of a modified Emotiv and commercial SynAmps EEG system. Psychophysiology 2017, 54, 1393–1404. [Google Scholar] [CrossRef]
- Liu, X.; Chao, F.; Jiang, M.; Zhou, C.; Ren, W.; Shi, M. Towards Low-Cost P300-Based BCI Using Emotiv Epoc Headset. In Proceedings of the UK Workshop on Computational Intelligence, Cardiff, UK, 6–8 September 2017; Volume 650, pp. 239–244. [Google Scholar] [CrossRef]
- Badcock, N.A.; Preece, K.A.; de Wit, B.; Glenn, K.; Fieder, N.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ 2015, 3, e907. [Google Scholar] [CrossRef] [Green Version]
- Fouad, I.A. A robust and reliable online P300-based BCI system using Emotiv EPOC + headset. J. Med Eng. Technol. 2021, 45, 94–114. [Google Scholar] [CrossRef]
- Balanou, E.; van Gils, M.; Vanhala, T. State-of-the-Art of Wearable EEG for Personalized Health Applications. Stud. Health Technol. Inform. 2013, 189, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.L.; Little, D.R. Small is beautiful: In defense of the small-N design. Psychon. Bull. Rev. 2018, 25, 2083–2101. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, P.C.M. A Manifesto on Psychology as Idiographic Science: Bringing the Person Back Into Scientific Psychology, This Time Forever. Meas. Interdiscip. Res. Perspect. 2004, 2, 201–218. [Google Scholar] [CrossRef]
- Bos, F.M.; Snippe, E.; de Vos, S.; Hartmann, J.A.; Simons, C.J.; van der Krieke, L.; de Jonge, P.B.; Wichers, M. Can we jump from cross-sectional to dynamic interpretationsof networks? Implications for the network perspective in psychiatry. Psychother. Psychosom. 2017, 86, 175–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molenaar, P.C. On the implications of the classical ergodic theorems: Analysis of developmental processes has to focus on intra-individual variation. Dev. Psychobiol. 2007, 50, 60–69. [Google Scholar] [CrossRef]
- Shah, R.V.; Grennan, G.; Zafar-Khan, M.; Alim, F.; Dey, S.; Ramanathan, D.; Mishra, J. Personalized machine learning of depressed mood using wearables. Transl. Psychiatry 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Birkhoff, G.D. What is the ergodic theorem? Am. Math. Mon. 1942, 49, 222–226. [Google Scholar] [CrossRef]
- Nelson, C.A.; de Haan, M.; Thomas, K.M. Neuroscience of Cognitivedevelopment: The Role of Experience and the Developing Brain; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Sporns, O. Networks of the Brain; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Medaglia, J.D.; Ramanathan, D.M.; Venkatesan, U.M.; Hillary, F.G. The challenge of non-ergodicity in network neuroscience. Netw. Comput. Neural Syst. 2011, 22, 148–153. [Google Scholar] [CrossRef]
- Vincent, S.B. The function of the viborissae in the behavior of the white rat. Anim. Behav. Monogr. 1912, 1, 84. [Google Scholar]
- Atkinson, R.C.; Bower, G.H.; Crothers, E.J. Introduction to Mathematical Learning Theory; Wiley: Hoboken, NJ, USA, 1965. [Google Scholar]
- Bedny, M.; Aguirre, G.; Thompson-Schill, S.L. Item analysis in functional magnetic resonance imaging. NeuroImage 2007, 35, 1093–1102. [Google Scholar] [CrossRef]
- Makeig, S.; Debener, S.; Onton, J.; Delorme, A. Mining event-related brain dynamics. Trends Cogn. Sci. 2004, 8, 204–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfurtscheller, G. and Aranibar, A. Event-related cortical desychronization detected by power measurement of scalp EEG. Electroencephalograph. Clin. Neurophysiol. 1977, 42, 817–826. [Google Scholar] [CrossRef]
- Byczynski, G.; Schibli, K.; Goldfield, G.; Leisman, G.; D’Angiulli, A. EEG Power Band Asymmetries in Children with and without Classical Ensemble Music Training. Symmetry 2022, 14, 538. [Google Scholar] [CrossRef]
- D’Angiulli, A.; Kenney, D.; Pham, D.A.T.; Lefebvre, E.; Bellavance, J.; Buchanan, D.M. Neurofunctional Symmetries and Asymmetries during Voluntary out-of- and within-Body Vivid Imagery Concurrent with Orienting Attention and Visuospatial Detection. Symmetry 2021, 13, 1549. [Google Scholar] [CrossRef]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.A.; Mikels, J.A.; James, T.W. Characterization of the Affective Norms for English Words by discrete emotional categories. Behav. Res. Methods 2007, 39, 1020–1024. [Google Scholar] [CrossRef]
- Bradley, M.; Lang, P.J. Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings (Technical Report C-1); Gainesv Cent Res Psychophysiology, University of Florida: Gainesville, FL, USA, 1999. [Google Scholar]
- Bradley, M.M.; Lang, P.J. Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings (Technical Report C-2); University of Florida: Gainesville, FL, USA, 2010. [Google Scholar]
- Imbir, K.K. Affective Norms for 4900 Polish Words Reload (ANPW_R): Assessments for Valence, Arousal, Dominance, Origin, Significance, Concreteness, Imageability and, Age of Acquisition. Front. Psychol. 2016, 7, 1081. [Google Scholar] [CrossRef] [Green Version]
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual; Technical Report A-8; University of Florida: Gainesville, FL, USA, 2008. [Google Scholar]
- Hajcak, G.; Dennis, T.A. Brain potentials during affective picture processing in children. Biol. Psychol. 2009, 80, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, W.K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958, 55, 352–358. [Google Scholar] [CrossRef]
- Mackworth, J.F. Paced memorizing in a continuous task. J. Exp. Psychol. 1959, 58, 206–211. [Google Scholar] [CrossRef]
- Gajewski, P.D.; Hanisch, E.; Falkenstein, M.; Thönes, S.; Wascher, E. What Does the n-Back Task Measure as We Get Older? Relations Between Working-Memory Measures and Other Cognitive Functions Across the Lifespan. Front. Psychol. 2018, 9, 2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharinger, C.; Soutschek, A.; Schubert, T.; Gerjets, P. Comparison of the Working Memory Load in N-Back and Working Memory Span Tasks by Means of EEG Frequency Band Power and P300 Amplitude. Front. Hum. Neurosci. 2017, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, and Social Sciences and Humanities Research Council, Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans, December 2018. Available online: https://ethics.gc.ca/eng/documents/tcps2-2018-en-interactive-final.pdf (accessed on 1 June 2022).
- D'Angiulli, A.; Griffiths, G.; Marmolejo-Ramos, F. Neural correlates of visualizations of concrete and abstract words in preschool children: A developmental embodied approach. Front. Psychol. 2015, 6, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Li, M.; Zhou, H.; Li, L.; Cui, J. Item-Wise Interindividual Brain-Behavior Correlation in Task Neuroimaging Analysis. Front. Neurosci. 2018, 12, 817. [Google Scholar] [CrossRef]
- D'Angiulli, A.; Pham, D.A.T.; Leisman, G.; Goldfield, G. Evaluating Preschool Visual Attentional Selective-Set: Preliminary ERP Modeling and Simulation of Target Enhancement Homology. Brain Sci. 2020, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- Genest, C. Vincentization Revisited. Ann. Stat. 1992, 20, 1137–1142. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Badcock, N.A.; Mousikou, P.; Mahajan, Y.; De Lissa, P.; Thie, J.; McArthur, G. Validation of the Emotiv EPOC® EEG gaming systemfor measuring research quality auditory ERPs. PeerJ 2013, 1, e38. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Schubring, D.; Schupp, H.T. Emotion and brain oscillations: High arousal is associated with decreases in alpha-and lower beta-band power. Cerebral Cortex 2021, 31, 1597–1608. [Google Scholar] [CrossRef]
- Güntekin, B.; Femir, B.; Gölbaşı, B.T.; Tülay, E.; Başar, E. Affective pictures processing is reflected by an increased long-distance EEG connectivity. Cogn. Neurodyn. 2017, 11, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Güntekin, B.; Başar, E. Event-related beta oscillations are affected by emotional eliciting stimuli. Neurosci. Lett. 2010, 483, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Strube, A.; Rose, M.; Fazeli, S.; Büchel, C. Alpha-to-beta-and gamma-band activity reflect predictive coding in affective visual processing. Sci. Rep. 2021, 11, 23492. [Google Scholar] [CrossRef] [PubMed]
- Yeo, D.; Choi, J.W.; Kim, K.H. Increased Gamma-band Neural Synchrony by Pleasant and Unpleasant Visual Stimuli. J. Biomed. Eng. Res. 2018, 39, 94–102. [Google Scholar]
- Chikhi, S.; Matton, N.; Blanchet, S. EEG power spectral measures of cognitive workload: A meta-analysis. Psychophysiology 2022, 59, e14009. [Google Scholar] [CrossRef]
- Güntekin, B.; Tülay, E. Event related beta and gamma oscillatory responses during perception of affective pictures. Brain Res. 2014, 1577, 45–56. [Google Scholar] [CrossRef]
- Blacker, K.J.; Negoita, S.; Ewen, J.B.; Courtney, S.M. N-back versus complex span working memory training. J. Cogn. Enhanc. 2017, 1, 434–454. [Google Scholar] [CrossRef]
- Liu, Y.; Ayaz, H.; Onaral, B.; Shewokis, P.A. Neural Adaptation to a Working Memory Task: A Concurrent EEG-fNIRS Study. In Proceedings of the 2015 International Conference on Augmented Cognition, Los Angeles, CA, USA, 7 July–2 August 2015; pp. 268–280. [Google Scholar] [CrossRef]
- Gevins, A.; Smith, M.E.; McEvoy, L.; Yu, D. High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cereb. Cortex 1997, 7, 374–385. [Google Scholar] [CrossRef] [Green Version]
- Klotzsche, F.; Mariola, A.; Hofmann, S.; Nikulin, V.V.; Villringer, A.; Gaebler, M. Using EEG to Decode Subjective Levels of Emotional Arousal During an Immersive VR Roller Coaster Ride. In Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 18–22 March 2018; pp. 605–606. [Google Scholar] [CrossRef]
- Sarma, P.; Barma, S. Emotion recognition by distinguishing appropriate EEG segments based on random matrix theory. Biomed. Signal Process. Control 2021, 70, 102991. [Google Scholar] [CrossRef]
- Duma, G.M.; Mento, G.; Semenzato, L.; Tressoldi, P. EEG anticipation of random high and low arousal faces and sounds. F1000Research 2019, 8, 1508. [Google Scholar] [CrossRef] [Green Version]
- Gummadavelli, A.; Kundishora, A.J.; Willie, J.T.; Andrews, J.; Gerrard, J.; Spencer, D.D.; Blumenfeld, H. Neurostimulation to improve level of consciousness in patients with epilepsy. Neurosurg. Focus 2015, 38, E10. [Google Scholar] [CrossRef] [PubMed]
- Aftanas, L.; Golocheikine, S. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neurosci. Lett. 2001, 310, 57–60. [Google Scholar] [CrossRef]
- Müller-Bardorff, M.; Schulz, C.; Peterburs, J.; Bruchmann, M.; Mothes-Lasch, M.; Miltner, W.; Straube, T. Effects of emotional intensity under perceptual load: An event-related potentials (ERPs) study. Biol. Psychol. 2016, 117, 141–149. [Google Scholar] [CrossRef]
- Boring, M.J.; Ridgeway, K.; Shvartsman, M.; Jonker, T.R. Continuous decoding of cognitive load from electroencephalography reveals task-general and task-specific correlates. J. Neural Eng. 2020, 17, 056016. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gwizdka, J.; Chaovalitwongse, W.A. Using Wireless EEG Signals to Assess Memory Workload in the $n$ -Back Task. IEEE Trans. Human-Machine Syst. 2015, 46, 424–435. [Google Scholar] [CrossRef]
- Kutafina, E.; Heiligers, A.; Popovic, R.; Brenner, A.; Hankammer, B.; Jonas, S.M.; Mathiak, K.; Zweerings, J. Tracking of Mental Workload with a Mobile EEG Sensor. Sensors 2021, 21, 5205. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.S.; McArthur, G.M.; Badcock, N.A. 10 years of EPOC: A scoping review of Emotiv’s portable EEG device. BioRxiv 2020. [Google Scholar] [CrossRef]
(A) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
EPOC | Brainvision | |||||||||
Band | Mental State | z | p | µ2 | Mental State | z | p | µ2 | ||
Low | High | Low | High | |||||||
(ANEW, Arousal) | ||||||||||
Delta | 2.02 | 2.16 | −1.10 | 0.271 | 0.09 | 10.74 | 9.34 | 3.18 | 0.001 | 0.72 |
Theta | 1.48 | 1.57 | −1.57 | 0.116 | 0.18 | 8.57 | 7.044 | 3.30 | <0.001 | 0.78 |
Alpha | 2.22 | 2.30 | −1.45 | 0.148 | 0.15 | 13.23 | 11.344 | 3.30 | <0.001 | 0.78 |
Beta | 2.20 | 2.11 | 1.51 | 0.132 | 0.16 | 16.53 | 18.784 | −2.23 | 0.026 | 0.36 |
Gamma | 0.89 | 0.97 | −2.04 | 0.041 | 0.30 | 14.94 | 18.99 | −3.23 | 0.001 | 0.75 |
(ANEW, Valence) | ||||||||||
Delta | 1.45 | 1.77 | −2.07 | 0.039 | 0.31 | 6.65 | 8.19 | −3.30 | <0.001 | 0.78 |
Theta | 2.10 | 1.72 | 1.30 | 0.195 | 0.12 | 5.62 | 5.93 | −3.30 | <0.001 | 0.78 |
Alpha | 2.13 | 1.98 | 0.88 | 0.379 | 0.06 | 10.28 | 10.51 | −1.38 | 0.167 | 0.14 |
Beta | 2.50 | 2.18 | 2.10 | 0.036 | 0.32 | 12.50 | 13.55 | −3.30 | <0.001 | 0.78 |
Gamma | 0.52 | 0.70 | −3.04 | 0.002 | 0.66 | 11.27 | 12.21 | −3.17 | 0.002 | 0.72 |
(IAPS, Arousal) | ||||||||||
Delta | 1.96 | 2.76 | −3.30 | <0.001 | 0.78 | 7.97 | 7.24 | 3.17 | 0.002 | 0.72 |
Theta | 1.42 | 1.78 | −3.11 | 0.002 | 0.69 | 5.80 | 6.00 | −3.18 | 0.001 | 0.72 |
Alpha | 2.21 | 2.48 | −2.93 | 0.003 | 0.61 | 8.79 | 9.03 | −1.48 | 0.140 | 0.16 |
Beta | 1.73 | 1.93 | −3.30 | <0.001 | 0.78 | 14.57 | 15.39 | −3.30 | <0.001 | 0.78 |
Gamma | 0.42 | 0.63 | −3.31 | <0.001 | 0.78 | 14.53 | 15.22 | −3.24 | 0.001 | 0.75 |
(IAPS, Valence) | ||||||||||
Delta | 1.75 | 2.80 | −3.30 | <0.001 | 0.78 | 7.66 | 6.99 | 3.30 | <0.001 | 0.78 |
Theta | 1.35 | 2.05 | −3.23 | 0.001 | 0.75 | 5.98 | 5.84 | 2.00 | 0.046 | 0.29 |
Alpha | 2.04 | 2.78 | −3.30 | <0.001 | 0.78 | 10.04 | 10.28 | −1.92 | 0.055 * | 0.26 |
Beta | 1.80 | 2.30 | −3.30 | <0.001 | 0.78 | 15.07 | 15.02 | 0.67 | 0.506 | 0.03 |
Gamma | 0.39 | 0.69 | −3.31 | <0.001 | 0.78 | 14.57 | 14.15 | 3.30 | <0.001 | 0.78 |
(n-Back 1,3,5) | ||||||||||
Delta | 2.70 | 2.39 | 2.45 | 0.014 | 0.43 | 2.89 | 2.72 | 1.23 | 0.221 | 0.11 |
Theta | 1.95 | 2.05 | −1.54 | 0.124 | 0.17 | 3.07 | 2.95 | 1.29 | 0.198 | 0.12 |
Alpha | 2.75 | 2.69 | 0.47 | 0.638 | 0.02 | 3.08 | 3.07 | 0.44 | 0.660 | 0.01 |
Beta | 2.77 | 2.75 | 0.03 | 0.975 | 0.00 | 3.92 | 4.23 | −3.30 | <0.001 | 0.78 |
Gamma | 0.95 | 0.93 | 0.59 | 0.556 | 0.02 | 4.25 | 4.49 | −2.86 | 0.004 | 0.58 |
(n-Back 2,4,6) | ||||||||||
Delta | 4.58 | 2.35 | 3.30 | <0.001 | 0.78 | 2.28 | 2.30 | −0.19 | 0.851 | 0.00 |
Theta | 2.90 | 1.98 | 3.30 | <0.001 | 0.78 | 2.78 | 3.11 | −2.79 | 0.005 | 0.56 |
Alpha | 4.08 | 2.55 | 3.30 | <0.001 | 0.78 | 2.65 | 2.94 | −3.20 | 0.001 | 0.73 |
Beta | 3.81 | 2.72 | 3.30 | <0.001 | 0.78 | 4.66 | 4.64 | −2.31 | 0.021 | 0.38 |
Gamma | 1.27 | 0.89 | 3.30 | <0.001 | 0.78 | 4.62 | 4.56 | −0.25 | 0.802 | 0.00 |
Note. Estimated marginal means of EEG power amplitude for mental states are reported in µV. For standard errors please refer to Figures S1–S6 in Supplementary Materials. Z statistics calculated from Wilcoxon non parametric test for small samples. Rows in bold identify comparisons yielding statistically similar results for both devices. “*” indicates marginal significance. | ||||||||||
(B) | ||||||||||
EPOC | Brainvision | |||||||||
Band | Mental State | z | p | µ2 | Mental State | z | p | µ2 | ||
Low | High | Low | High | |||||||
(ANEW, Arousal) | ||||||||||
Delta | 2.25 | 1.88 | 1.85 | 0.064 | 0.24 | 31.11 | 27.85 | 2.10 | 0.035 | 0.32 |
Theta | 0.58 | 0.60 | −0.46 | 0.649 | 0.02 | 13.38 | 9.59 | 3.30 | <0.001 | 0.78 |
Alpha | 1.22 | 1.04 | 1.92 | 0.055 * | 0.06 | 29.82 | 21.29 | 3.30 | <0.001 | 0.78 |
Beta | 0.40 | 0.36 | 1.69 | 0.090 | 0.20 | 12.63 | 16.65 | −2.17 | 0.030 | 0.34 |
Gamma | 0.11 | 0.11 | −0.24 | 0.812 | 0.00 | 9.94 | 15.09 | −3.11 | 0.002 | 0.69 |
(ANEW, Valence) | ||||||||||
Delta | 0.89 | 1.02 | −0.69 | 0.488 | 0.03 | 12.09 | 20.83 | −3.30 | <0.001 | 0.78 |
Theta | 1.17 | 0.64 | 1.92 | 0.055 * | 0.26 | 6.40 | 6.40 | 0.21 | 0.834 | 0.00 |
Alpha | 0.97 | 0.60 | 2.48 | 0.013 | 0.44 | 19.65 | 18.98 | 1.41 | 0.158 | 0.14 |
Beta | 0.49 | 032 | 2.35 | 0.019 | 0.39 | 7.21 | 8.45 | −3.30 | <0.001 | 0.78 |
Gamma | 0.02 | 0.03 | 1.00 | 0.317 | 0.07 | 5.25 | 6.40 | −3.30 | <0.001 | 0.78 |
(IAPS, Arousal) | ||||||||||
Delta | 1.97 | 2.81 | −1.98 | 0.048 | 0.28 | 16.14 | 13.08 | 3.30 | <0.001 | 0.78 |
Theta | 0.54 | 0.70 | −2.42 | 0.015 | 0.42 | 5.90 | 6.36 | −2.13 | 0.033 | 0.32 |
Alpha | 1.27 | 1.16 | 0.25 | 0.807 | 0.00 | 11.34 | 14.77 | −2.73 | 0.006 | 0.53 |
Beta | 0.21 | 0.22 | −0.92 | 0.357 | 0.06 | 9.57 | 11.26 | −3.30 | <0.001 | 0.78 |
Gamma | <0.01 | <0.01 | 1.00 | 0.317 | 0.07 | 8.44 | 9.57 | −3.17 | 0.002 | 0.72 |
(IAPS, Valence) | ||||||||||
Delta | 1.60 | 2.69 | −3.02 | 0.003 | 0.65 | 14.10 | 12.14 | 2.79 | 0.005 | 0.56 |
Theta | 0.47 | 0.98 | −3.05 | 0.002 | 0.67 | 6.29 | 6.24 | 0.47 | 0.638 | 0.02 |
Alpha | 0.96 | 1.40 | −3.11 | 0.002 | 0.69 | 16.98 | 17.95 | −1.57 | <0.001 | 0.12 |
Beta | 0.24 | 0.33 | −3.22 | 0.001 | 0.74 | 10.59 | 10.68 | −0.18 | 0.861 | 0.00 |
Gamma | 0.01 | 0.01 | 0.00 | 1.000 | 0.00 | 9.08 | 8.50 | 3.30 | <0.001 | 0.78 |
(n-Back 1,3,5) | ||||||||||
Delta | 3.68 | 2.70 | 2.35 | 0.019 | 0.39 | 4.63 | 3.72 | 1.41 | 0.158 | 0.14 |
Theta | 0.99 | 1.10 | −1.82 | 0.069 | 0.24 | 2.50 | 2.42 | 0.47 | 0.638 | 0.02 |
Alpha | 1.67 | 1.65 | 0.03 | 0.975 | 0.00 | 2.12 | 1.97 | 1.16 | 0.245 | 0.10 |
Beta | 0.67 | 0.69 | −0.25 | 0.807 | 0.00 | 1.17 | 1.34 | 3.18 | 0.001 | 0.72 |
Gamma | 0.14 | 0.15 | −1.70 | 0.090 | 0.21 | 1.09 | 1.24 | −2.67 | 0.008 | 0.51 |
(n-Back 2,4,6) | ||||||||||
Delta | 10.48 | 2.64 | 3.30 | <0.001 | 0.78 | 2.53 | 2.39 | 0.66 | 0.510 | 0.03 |
Theta | 2.45 | 1.05 | 3.30 | <0.001 | 0.78 | 2.37 | 2.79 | −2.61 | 0.009 | 0.49 |
Alpha | 4.79 | 1.50 | 3.30 | <0.001 | 0.78 | 1.42 | 1.69 | −2.73 | 0.006 | 0.53 |
Beta | 1.16 | 0.61 | 3.30 | <0.001 | 0.78 | 1.71 | 1.72 | −0.16 | 0.875 | 0.00 |
Gamma | 0.17 | 0.11 | 3.19 | 0.001 | 0.73 | 1.47 | 1.38 | 1.95 | 0.052 | 0.27 |
Note. Estimated marginal means of EEG power for mental states are reported in µV. For standard errors please refer to Figures S1–S6 in Supplementary Materials. Z statistics calculated from Wilcoxon non parametric test for small samples. Rows in bold identify comparisons yielding statistically similar results for both devices. “*” indicates marginal significance. |
Task | EEG Feature | Mental State | System | Significant Changes from Low to High State |
---|---|---|---|---|
ANEW | Amplitude | Arousal | Epoc | Increase for Gamma |
BV | Decrease for Delta, Theta, and Alpha Increase for Beta and Gamma | |||
Valence | Epoc | Decrease for Beta Increase for Delta and Gamma | ||
BV | Increase for all frequency bands | |||
IAPS | Amp | Arousal | Epoc | Increase for all frequency bands |
BV | Decrease for Delta Increase for Theta, Beta and Gamma | |||
Valence | Epoc | Increase for all frequency bands | ||
BV | Decrease for Delta, Theta, and Gamma Increase for Alpha * | |||
n-Back | Amp | 1-3-5 | Epoc | Decrease for Delta |
BV | Increase for Beta and Gamma | |||
2-4-6 | Epoc | Decrease for all frequency bands | ||
BV | Increase for Theta, Alpha, and Beta | |||
ANEW | Power | Arousal | Epoc | Decrease for Alpha * |
BV | Decrease for Delta, Theta, and Alpha Increase for Beta and Gamma | |||
Valence | Epoc | Decrease for Theta *, Alpha, and Beta | ||
BV | Increase for Delta, Beta, and Gamma | |||
IAPS | Power | Arousal | Epoc | Increase for Delta and Theta |
BV | Decrease for Delta Increase for Theta, Alpha, Beta, and Gamma | |||
Valence | Epoc | Increase for Delta, Theta, Alpha, and Beta | ||
BV | Decrease for Delta and Gamma Increase for Alpha | |||
n-Back | Power | 1-3-5 | Epoc | Decrease for Delta |
BV | Decrease for Beta Increase for Gamma | |||
2-4-6 | Epoc | Decrease for all frequency bands | ||
BV | Decrease for Gamma Increase for Theta and Alpha |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Angiulli, A.; Lockman-Dufour, G.; Buchanan, D.M. Promise for Personalized Diagnosis? Assessing the Precision of Wireless Consumer-Grade Electroencephalography across Mental States. Appl. Sci. 2022, 12, 6430. https://doi.org/10.3390/app12136430
D’Angiulli A, Lockman-Dufour G, Buchanan DM. Promise for Personalized Diagnosis? Assessing the Precision of Wireless Consumer-Grade Electroencephalography across Mental States. Applied Sciences. 2022; 12(13):6430. https://doi.org/10.3390/app12136430
Chicago/Turabian StyleD’Angiulli, Amedeo, Guillaume Lockman-Dufour, and Derrick Matthew Buchanan. 2022. "Promise for Personalized Diagnosis? Assessing the Precision of Wireless Consumer-Grade Electroencephalography across Mental States" Applied Sciences 12, no. 13: 6430. https://doi.org/10.3390/app12136430