Sink and Source Functions for Metal(loid)s in Sediments and Soils of Two Water Reservoirs of the Ore Mountains, Saxony, Germany
Abstract
:1. Introduction
- (1)
- To record metal(loid) concentrations in the sediments of the reservoirs and to evaluate them exemplarily against legal requirements;
- (2)
- To highlight differences between both reservoirs with the help of correlation analyses between physicochemical sediment properties and metal(loid) concentrations and to discuss their causes;
- (3)
- To draw conclusions regarding the origin of the measured metal concentrations.
2. Materials and Methods
2.1. Field Campaign and Sample Collecting
2.2. Laboratory Analyses
2.3. Data Interpretation
2.4. Statistical Operations
3. Results
3.1. Physicochemical Properties
3.2. Metal(loid) Concentrations
3.2.1. Einsiedel Reservoir
3.2.2. Berthelsdorf Smelter Pond (BSP)
3.2.3. Correlation Analysis
4. Discussion
4.1. Metal(loid)s in Reservoir Sediments
4.2. Metal(loid) Concentrations in Soils and Brook Sediments of the Einsiedel Reservoir
4.3. Evaluation of the Results Based on Lawful Standards
4.4. Evaluation of the Correlation Analyses
4.5. Sources and Sinks of Metal(loid)s
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blume, H.-P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.M. Scheffer/Schachtschabel Soil Science; Springer: Berlin/Heidelberg, Germany, 2016; 618p. [Google Scholar]
- Alloway, B.J. Schwermetalle in Böden; Springer: Heidelberg/Berlin, Germany, 1999; pp. 41–61. [Google Scholar]
- Salomons, W.; Förstner, U. Metals in the Hydrocycle; Springer: Heidelberg/Berlin, Germany, 1984; pp. 63–92. [Google Scholar]
- Opp, C. Schwermetalle. In Analyse und ökologische Bewertung der Landschaft, 2nd ed.; Schreiber, K.-F., Bastian, O., Eds.; Spektrum: Heidelberg/Berlin, Germany, 1999; pp. 239–246. [Google Scholar]
- Hahn, J. Schwermetall-Status und Schwermetallmobilität in Auenböden und Stauseesedimenten unter besonderer Berücksichtigung von Durchfeuchtungs-und Wasserstandsänderungen. Ph.D. Thesis, FB Geographie, Philipps-Universität Marburg, Germany, 2014. Available online: http://archiv.ub.uni-marburg.de/diss/z2014/0103/pdf/djh.pdf (accessed on 23 January 2022).
- Opp, C.; Hahn, J.; Zitzer, N.; Laufenberg, G. Heavy metal concentrations in pores and surface waters during the emptying of a small reservoir. J. Geosci. Environ. Prot. 2015, 3, 66–72. [Google Scholar] [CrossRef]
- Hahn, J.; Opp, C.; Evgrafova, A.; Groll, M.; Zitzer, N.; Laufenberg, G. Impacts of dam draining on the mobility of heavy metals and arsenic in water and basin bottom sediments of three studied dams in Germany. Sci. Total Environ. 2018, 640–641, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Förstner, U. Bindungsformen von Schwermetallen in Sedimenten und Schlämmen: Sorption/Mobilisierung, chemische Extraktion und Bioverfügbarkeit. Fresenius Z. Anal. Chem. 1983, 316, 604–611. [Google Scholar] [CrossRef]
- Tschopp, J. Die Verunreinigungen der Seen mit Schwermetallen—Modelle für die Regulierung der Schwermetallkonzentrationen. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 1979. Available online: https://www.dora.lib4ri.ch/eawag/islandora/object/eawag%3A13197/datastream/PDF/Tschopp-1979-Die_Verunreinigung_der_Seen_mit-%28published_version%29.pdf (accessed on 24 January 2022).
- Audry, S.; Schäfer, J.; Blanc, G.; Jouanneau, J.M. Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ. Pollut. 2004, 132, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Auerswald, K. Feststofftransport in Fließgewässern. In Handbuch der Bodenkunde, 3rd ed.; Horn, R., Blume, H.P., Felix-Henningsen, P., Fischer, W., Frede, H.G., Stahr, K., Eds.; Ecomed: Landsberg/Lech, Germany, 1997; Section 6.3.4; pp. 1–12. [Google Scholar]
- Loska, K.; Wiechula, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef]
- Al-Taani, A.A.; Batayneh, A.T.; El-Radaideh, N.; Ghrefat, H.; Zumlot, T.; Al-Rawabdeh, A.M.; Al-Momani, T.; Taani, T. Spatial distribution and pollution assessment of trace metals in surface sediments of Ziqlab Reservoir, Jordan. Environ. Monit. Assess. 2015, 187, 32. [Google Scholar] [CrossRef]
- Franklin, R.L.; Teixeira Fávaro, D.I.; Damatto, S.R. Trace metal and rare earth elements in a sediment profile from the Rio Grande Reservoir, São Paulo, Brazil: Determination of anthropogenic contamination, dating, and sedimentation rates. J. Radioanal. Nucl. Chem. 2016, 307, 99–110. [Google Scholar] [CrossRef]
- Venelinov, T.; Mihaylova, V.; Peycheva, R.; Todorov, M.; Yotova, G.; Todorov, B.; Lyubomirova, V.; Tsakovski, S. Sediment Assessment of the Pchelina Reservoir, Bulgaria. Molecules 2021, 26, 7517. [Google Scholar] [CrossRef]
- Chheang, L.; Thongkon, N.; Sriwiriyarat, T.; Thanasupsin, S.P. Heavy Metal Contamination and Human Health Implications in the Chan Thnal Reservoir, Cambodia. Sustainability 2021, 13, 13538. [Google Scholar] [CrossRef]
- Szara-Bąk, M.; Baran, A.; Klimkowicz-Pawlas, A.; Tkaczewska, J.; Wojtasik, B. Mobility, ecotoxicity, bioaccumulation and sources of trace elements in the bottom sediments of the Rożnów reservoir. Environ. Geochem. Health 2021, 43, 4701–4718. [Google Scholar] [CrossRef]
- Reis, A.R.; Roboredo, M.; Pinto, J.P.R.M.; Vieira, B.; Varandas, S.G.P.; Fernandes, L.F.S.; Pacheco, F.A.L. Distribution and Potential Availability of As, Metals and P in Sediments from a Riverine Reservoir in a Rural Mountainous Catchment (NE Portugal). Int. J. Environ. Res. Public Health 2021, 18, 5616. [Google Scholar] [CrossRef] [PubMed]
- Federal Soil Protection Ordinance (Bundes-Bodenschutz- und Altlastenverordnung; BBodSchV). Bundesgesetzblatt. 16.7.1999, Teil I, Nr. 36, Bonn; pp. 1554–1582. Available online: https://www.bgbl.de/xaver/bgbl/start.xav?start=%2F%2F*%5B%40attr_id%3D%27bgbl199s1554.pdf%27%5D#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl199s1554.pdf%27%5D__1655268421215 (accessed on 15 June 2022).
- German Federal Soil Protection Act (Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten]] (Bundes-Bodenschutzgesetz—BBodSchG). Bundesgesetzblatt. 17.3.1998, Teil I, Nr. 16, Bonn; pp. 502–510. Available online: https://www.bgbl.de/xaver/bgbl/start.xav?start=//*%5B@attr_id=%27bgbl198055.pdf%27%5D#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl198s0502.pdf%27%5D__1655268953973 (accessed on 15 June 2022).
- LTV (Landestalsperrenverwaltung). Available online: www.talsperren-sachsen.de (accessed on 11 January 2022).
- Tarvainen, T.; Reichel, S.; Müller, I.; Jordan, I.; Hube, D.; Eurola, M.; Loukola-Ruskeeniemi, K. Arsenic in agro-ecosystems under anthropogenic pressure in Germany and France compared to a geogenic as region in Finland. J. Geochem. Explor. 2020, 217, 106606. [Google Scholar] [CrossRef]
- Ulrich, K.U.; Paul, L.; Hupfer, M. Pollutants in the sediments of water reservoirs. Wasser Boden 2000, 52, 27–32. [Google Scholar]
- Pälchen, W. Geologie von Sachsen II. Georessourcen, Geopotenziale, Georisiken; Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2009; 307p. [Google Scholar]
- Sebastian, U. Die Geologie des Erzgebirges; Springer: Berlin/Heidelberg, Germany, 2013; 268p. [Google Scholar]
- LTV (Landestalsperrenverwaltung). Die Talsperre Einsiedel. 2014. Available online: https://publikationen.sachsen.de/bdb/artikel/22154 (accessed on 24 January 2022).
- Wagenbreth, O.; Wächtler, E. (Eds.) Der Freiberger Bergbau. Technische Denkmale und Geschichte; Springer Spektrum: Berlin, Germany, 2013; 504p. [Google Scholar]
- John, H.; Achziger, R.; Günther, A.; Richert, E.; Kugler, J.; Miekley, B.; Olias, M. Die Bergwerksteiche der Revierwasserlaufanstalt Freiberg als Lebensraum Einer Einzigartigen Teichbodenvegetation—Gebietshistorie und Vegetationsökologie als Basis für Nachhaltigen Naturschutz. 2010. Available online: https://www.dbu.de/OPAC/ab/DBU-Abschlussbericht-AZ-24796.pdf (accessed on 24 January 2022).
- LTV (o.J): Staumeisterei Revierwasserlaufanstalt Freiberg. Available online: https://publikationen.sachsen.de/bdb/artikel/17650 (accessed on 24 January 2022).
- Zänker, C.; Ullrich, E.; Schumann, H.-J.; Bachmann, F.; Fischer, F. Freiberg-Brander Bergbaurevier. 2020. Available online: https://osterzgebirge.org/gebiete/freiberg.html (accessed on 24 January 2022).
- LfULG (Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie). iDA-Digitale Bodenkarte 1:50.000. 2019. Available online: https://www.boden.sachsen.de/digitale-bodenkarte-1-50-000-19474.html (accessed on 24 January 2022).
- Claus, C. Heimatwerk Einsiedel—Die Talsperre Einsiedel. 2004. Available online: https://www.heimatwerk-einsiedel.de/altenhainer-allee/talsperre/ (accessed on 24 January 2022).
- Montan Region Krušné Hory—Erzgebirge. 2018. Available online: http://www.montanregion.cz/en/montanregion-en/freiberg-mining-landscape.html (accessed on 10 January 2022).
- IUSS Working Group WRB. World Reference Base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Report 106; FAO: Rome, Italy, 2015; p. 106. [Google Scholar]
- Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie: Downloadbereich Digitale Höhenmodelle. Available online: https://www.geodaten.sachsen.de/downloadbereich-digitale-hoehenmodelle-4851.html (accessed on 15 January 2022).
- Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie: Geodatendownload des Fachbereichs Wasser. Available online: https://www.wasser.sachsen.de/geodatendownload-12834.html#a-12891 (accessed on 12 May 2022).
- Blume, H.-P.; Stahr, K.; Leinweber, P. Bodenkundliches Praktikum, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010; 246p. [Google Scholar]
- DIN ISO 11277; (Deutsches Institut für Normung) Bodenbeschaffenheit-Bestimmung der Partikelgrößenverteilung in Mineralböden-Verfahren mittels Siebung und Sedimentation. Beuth: Berlin, Germany, 2002.
- DIN 18128; (Deutsches Institut für Normung) Baugrund-Untersuchung von Bodenproben-Bestimmung des Glühverlustes Bestimmung des Glühverlustes und der Trockenmasse. Beuth: Berlin, Germany, 2002.
- DIN ISO 11265; (Deutsches Institut für Normung) Bodenbeschaffenheit-Bestimmung der Spezifischen Elektrischen Leitfähigkeit. Beuth: Berlin, Germany, 1997.
- DIN EN ISO 17294-2; Wasserbeschaffenheit-Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS)-Teil 2: Bestimmung von Ausgewählten Elementen Einschließlich Uran-Isotope (ISO 17294-2:2016). Beuth: Berlin, Germany, 2017.
- DIN ISO 11466; (Deutsches Institut für Normung) Bodenbeschaffenheit: Extraktion in Königswasser löslicher Spurenelemente. Beuth: Berlin, Germany, 1995.
- LfULG. Hintergrundwerte für sächsische Böden-Angaben für Stoffgehalte, differenziert nach Substrat, Nutzung und Horizont. 2015. Available online: https://www.umwelt.sachsen.de/umwelt/download/boden/HGW_BO_SN_2015_KW.pdf (accessed on 24 January 2022).
- Duller, S. Einführung in die Nichtparametrische Statistik mit SAS, R und SPSS. Ein Anwendungsorientiertes Lehr-und Arbeitsbuch, 2nd ed.; Springer: Heidelberg/Berlin, Germany, 2018. [Google Scholar]
- Utermann, J.; Aydın, C.T.; Bischoff, N.; Böttcher, J.; Eickenscheidt, N.; Gehrmann, J.; König, N.; Scheler, B.; Stange, F.; Wellbrock, N. Heavy metal stocks and concentrations in forest soils. In Status and Dynamics of Forests in Germany. Ecological Studies (Analysis and Synthesis) 237; Wellbrock, N., Bolte, A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Zhang, C.; Yu, Z.G.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Cui, F.; Zhu, M.Y.; Shen, L.Q.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Borma, L.D.S.; Ehrlich, M.; Barbosa, M.C. Acidification and release of heavy metals in dredged sediments. Can. Geotech. J. 2003, 40, 1154–1163. [Google Scholar] [CrossRef]
- Schippers, A. Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. In Special Paper 379: Sulfur Biogeochemistry-Past and Present 379; Geological Society of America: Boulder, CO, USA, 2004; pp. 49–62. [Google Scholar]
- Rank, G.; Kardel, K.; Pälchen, W.; Weidensdörfer, H. Soil Atlas of the Free State of Saxony, Part 3, Soil Measurement Program; Sächsisches Landesamt für Umwelt und Geologie: Freiberg, Germany, 1999. [Google Scholar]
- Müller, J.; Ruppert, H.; Muramatsu, Y.; Schneider, J. Reservoir sediment—A witness of mining and industrial development (Malter Reservoir, Eastern Erzgebirge, Germany). Environ. Geol. 2000, 39, 1341–1351. [Google Scholar] [CrossRef]
- Fiedler, H.; Klinger, L. The trace element situation in the forest soils of the eastern Ore Mountains. In Ways and Progress of Science: Contributions by Members of the Academy to the 150th Anniversary of its Founding; Haase, G., Eichler, E., Eds.; Saxon Academy of Sciences: Leipzig, Germany, 1996; pp. 679–697. [Google Scholar]
- Rosenbaum-Mertens, J. Sediments as Pollutant Archives. Changes in Heavy Metal Input into the Environment since 1945. High-resolution Investigations of Lake Sediments in Industrial Zones and Natural Areas. Ph.D. Thesis, University of Duisburg-Essen, Duisburg-Essen, Germany, 2003. [Google Scholar]
- Sojka, M.; Jaskuła, J.; Siepak, M. Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk. Water 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Junge, F.W. Schadstoffsenke Muldestausee—Aktuelles Potenzial und Jüngste Entwicklung seit 2002. 2013. Available online: http://elsa-elbe.de/massnahmen/fachstudien-neu/fachstudie-muldestausee.html (accessed on 26 January 2022).
- Wildi, W.; Dominik, J.; Loizeau, J.L.; Thomas, R.L.; Favarger, P.-Y.; Haller, L.; Perroud, A.; Peytreman, C. River, lake and reservoir sedimentation by heavy metals downstream from urban areas from Switzerland. Lakes Reserv. Res. Manag. 2004, 9, 75–82. [Google Scholar] [CrossRef]
- Hahn, J.; Bui, T.; Kessler, M.; Weber, C.J.; Beier, T.; Mildenberger, A.; Traub, M.; Opp, C. Catchment soil properties affect metal(oid) enrichment in reservoir sediments of German low mountain regions. Appl. Sci. 2022, 12, 2277. [Google Scholar] [CrossRef]
- Blake, L.; Goulding, K.W.T. Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 2002, 240, 235–251. [Google Scholar] [CrossRef]
- Eggleton, J.; Thomas, K.V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int. 2004, 30, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Hu, Y.; Luo, J.; Xu, B.; Zhao, J. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J. Hazard. Mater. 2009, 165, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Hahn, J.; Opp, C.; Ganzenmüller, R.; Ewert, A.; Schneider, B.; Zitzer, N.; Laufenberg, G. Catchment soils as a factor of trace metal accumulation in sediments of the reservoir Klingenberg (Eastern Ore Mountains, Germany). J. Environ. Sci. 2019, 86, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Freiberger Altertumsverein E.V. Geschichtsverein des Freiberger Landes. Available online: https://www.freiberger-altertumsverein.de/cm/index.php?option=com_content&view=article&id=9&Itemid=21 (accessed on 15 January 2022).
Einsiedel Reservoir | Berthelsdorf Smelter Pond (BSP) | |
---|---|---|
Dam Characteristics | ||
Storage volume (million m3): | 0.32 | 0.325 |
Period of construction: | 1891−1894 | 1558–1560; 1882 |
Outlet: | Bottom outlet | Overflow outlet |
Main use: | Drinking water supply | Process water supply |
Tributaries: | Stadtguttalbach Brook, pipe connection (to Neunzehnhain 1 Reservoir) | Münzbach Brook, Hohbirker Kunstgraben moat, Bauerzuggraben moat |
Catchment | ||
Size (km2): | 1.8 | 4.78 |
Geologic formations: | Phyllite, clay shale, amphibolite | Biotit gneiss, biotit-twofeldspar gneiss, quartzite |
Predominant soils: | Gleyic Fluvisols, Dystric Cambisols | Gleyic Fluvisols, Stagnic Fluvisols, Umbric Planosols, Skeletic Regosols |
Predominant land use: | Forestry (Picea abies) | Grassland, agriculture, settlement |
Geogenic Background Values (Median) (mg/kg) for Einsiedel Reservoir Sediments (LfULG 2015, [43]) | |||||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Co | V |
65 | 0.13 | 34 | 18 | 0.14 | 19 | 86 | 68 | 6.6 | 53 |
Metal(loid)s (median ± average absolute deviation) in sediments of the Einsiedel Reservoir (mg/kg), n = 18 | |||||||||
24.7 ± 10.2 | 6.7 ± 4.3 | 34.7 ± 8.4 | 20.9 ± 8.6 | 0.57 ± 0.23 | 49.0 ± 24.3 | - | 283 ± 153 | 31.4 ± 13.9 | 47.5 ± 13.2 |
Metal(loid)s (mean ± average absolute deviation) in brook sediments of the Einsiedel Reservoir (mg/kg), n = 3 | |||||||||
16.4 ± 1.3 | 7.5 ± 3.1 | 29.7 ± 2.1 | 34.8 ± 5.9 | 0.19 ± 0.05 | 127 ± 33.8 | 43.9 ± 1.5 | 195 ± 47.3 | 32.3 ± 6.9 | 55.7 ± 2.1 |
Geogenic Background Values (Median) (mg/kg) for Einsiedel Soils (LfULG 2015 [43]) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Layer | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Co | V |
tos | 65 | 0.13 | 34 | 18 | 0.14 | 19 | 86 | 68 | 6.6 | 53 |
sus | 33 | 0.10 | 41 | 17 | 0.09 | 25 | 31 | 81 | 10.0 | 57 |
Metal(loid)s (median ± average absolute deviation) in soils of the Einsiedel Reservoir (mg/kg), n = 12 | ||||||||||
tos | 24.4 ± 2.8 | 0.11 ± 0.07 | 16.8 ± 2.6 | 14.6 ± 2.5 | 0.13 ± 0.07 | 16.7 ± 3.0 | 78.1 ± 5.6 | 42.4 ± 8.1 | 8.4 ± 1.8 | 36.0 ± 6.8 |
sus | 15.2 ± 3.6 | 0.08 ± 0.06 | 19.8 ± 3.0 | 12.2 ± 2.6 | 0.11 ± 0.03 | 19.4 ± 2.1 | 43.9 ± 8.7 | 44.1 ± 5.7 | 10.8 ± 1.9 | 38.4 ± 6.6 |
Geogenic Background Values (Median) (mg/kg) for BSP Sediments (LfULG 2015 [43]) | |||||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Co | V |
36 | 0.59 | 30 | 22 | 0.12 | 17 | 83 | 140 | 9.3 | 46 |
Metal(loid) concentrations (median ± average absolute deviation) in sediments of the BSP (mg/kg), n = 43 | |||||||||
62.9 ± 695 | 10.3 ± 12.0 | 43.1 ± 11.0 | 50.2 ± 207 | 0.51 ± 0.25 | 9.4 ± 4.7 | 204 ± 212 | 626 ± 6264 | 6.4 ± 2.7 | 57.0 ± 11.2 |
As | Cd | Cr | Co | Cu | Fe | Hg | Ni | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
LOI | 0.49 | 0.69 | - | 0.58 | 0.70 | - | 0.65 | 0.65 | - | 0.68 |
pH | - | - | −0.63 | - | - | −0.82 | - | - | −0.74 | - |
Electrical conductivity | - | - | 0.56 | - | - | 0.75 | - | - | 0.61 | - |
As | 0.91 | 0.65 | 0.96 | 0.86 | 0.50 | 0.88 | 0.91 | 0.74 | 0.91 | |
Cd | - | 0.92 | 0.88 | - | 0.91 | 0.91 | 0.53 | 0.96 | ||
Cr | 0.58 | 0.55 | 0.58 | - | 0.57 | 0.94 | 0.56 | |||
Co | 0.90 | - | 0.90 | 0.90 | 0.69 | 0.91 | ||||
Cu | - | 0.85 | 0.90 | 0.64 | 0.89 | |||||
Fe | - | - | 0.69 | - | ||||||
Hg | 0.82 | - | 0.83 | |||||||
Ni | 0.69 | 0.96 | ||||||||
V | 0.65 |
As | Cd | Cr | Co | Cu | Fe | Hg | Ni | V | Zn | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|
LOI | 0.76 | - | - | −0.82 | - | - | - | −0.62 | - | - | 0.92 |
pH | - | - | - | 0.69 | - | - | - | - | - | - | - |
Electrical conductivity | - | - | 0.60 | - | - | - | - | - | - | - | - |
Clay content | 0.74 | - | - | −0.89 | - | - | - | −0.69 | - | - | 0.74 |
As | - | - | - | - | - | - | - | - | - | 0.84 | |
Cd | 0.59 | - | 0.62 | 0.58 | - | 0.63 | - | 0.58 | - | ||
Cr | - | - | 0.67 | - | - | 0.95 | - | - | |||
Co | - | 0.76 | - | 0.90 | - | 0.69 | −0.63 | ||||
Cu | - | - | - | - | 0.62 | 0.59 | |||||
Fe | - | 0.78 | - | 0.88 | - | ||||||
Hg | −0.58 | - | - | - | |||||||
Ni | - | 0.63 | - | ||||||||
V | - | - | |||||||||
Zn | - |
As | Cd | Cr | Co | Cu | Fe | Hg | Ni | Pb | V | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
LOI | - | 0.46 | 0.55 | - | 0.31 | - | 0.33 | 0.41 | - | 0.51 | - |
pH | −0.63 | −0.36 | - | - | - | −0.39 | - | - | - | - | - |
Electrical conductivity | 0.63 | 0.37 | - | - | 0.35 | 0.41 | - | - | - | - | 0.36 |
As | 0.81 | - | - | 0.81 | 0.74 | 0.71 | - | 0.70 | 0.31 | 0.79 | |
Cd | 0.45 | 0.35 | 0.84 | 0.75 | 0.79 | 0.40 | 0.68 | 0.56 | 0.93 | ||
Cr | 0.90 | - | 0.48 | 0.41 | 0.92 | - | 0.94 | 0.40 | |||
Co | - | 0.54 | 0.33 | 0.94 | - | 0.89 | 0.35 | ||||
Cu | 0.74 | 0.72 | - | 0.93 | 0.41 | 0.89 | |||||
Fe | 0.79 | 0.48 | 0.59 | 0.56 | 0.80 | ||||||
Hg | 0.41 | 0.63 | 0.42 | 0.66 | |||||||
Ni | - | 0.87 | 0.34 | ||||||||
Pb | - | 0.75 | |||||||||
V | 0.55 |
Reservoir | As | Cd | Cr | Co | Cu | Hg | Ni | Pb | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Einsiedel Reservoir (median) | 24.7 | 6.72 | 34.7 | 31.4 | 20.9 | 0.57 | 49 | - | 47.5 | 283 |
Berthelsdorf Reservoir (median) | 62.9 | 10.3 | 43.1 | 6.4 | 50.2 | 0.51 | 9.4 | 204 | 57 | 626 |
Rybnik, Poland (median) [12] | - | 23.2 | 101 | - | 469 | - | 69.5 | 115 | - | 1612 |
Malter, Germany (median) [50] | - | 34.6 | 195 | 24 | 197 | - | - | 476 | - | 1434 |
Muldestausee, Germany (average) [54] | 271 | 57 | 121 | - | 240 | 0.95 | 105 | 343 | - | 2184 |
Wettinger Stausee, Switzerland (average) [55] | - | 2.56 | 63.1 | 9.1 | 81.9 | 1.58 | 52.6 | 139 | - | 344 |
As | Cd | Cu | Cr | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
Precautionary values for loam/silt | - | 1 | 40 | 60 | 0.5 | 50 | 70 | 150 |
Examination values for the direct intake of pollutants from park and leisure facilities (mg/kg) | 125 | 50 | - | 1000 | 50 | 350 | 1000 | - |
Action values for the pathway soil-plant on grassland (mg/kg) | 50 | 20 | 1300 | - | 2 | 1900 | 1200 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beier, T.; Opp, C.; Hahn, J.; Zitzer, N. Sink and Source Functions for Metal(loid)s in Sediments and Soils of Two Water Reservoirs of the Ore Mountains, Saxony, Germany. Appl. Sci. 2022, 12, 6354. https://doi.org/10.3390/app12136354
Beier T, Opp C, Hahn J, Zitzer N. Sink and Source Functions for Metal(loid)s in Sediments and Soils of Two Water Reservoirs of the Ore Mountains, Saxony, Germany. Applied Sciences. 2022; 12(13):6354. https://doi.org/10.3390/app12136354
Chicago/Turabian StyleBeier, Thomas, Christian Opp, Jens Hahn, and Nina Zitzer. 2022. "Sink and Source Functions for Metal(loid)s in Sediments and Soils of Two Water Reservoirs of the Ore Mountains, Saxony, Germany" Applied Sciences 12, no. 13: 6354. https://doi.org/10.3390/app12136354
APA StyleBeier, T., Opp, C., Hahn, J., & Zitzer, N. (2022). Sink and Source Functions for Metal(loid)s in Sediments and Soils of Two Water Reservoirs of the Ore Mountains, Saxony, Germany. Applied Sciences, 12(13), 6354. https://doi.org/10.3390/app12136354