A Multiview Representation Learning Framework for Large-Scale Urban Road Networks
Abstract
:1. Introduction
- We propose a new random walk method to capture the structure function of the road network from a topology-aware graph and the vehicle transfer pattern from a mobility-aware graph.
- We design a new road network data-organization algorithm, including optimal segmentation, subgraph repair, and walk index calculation to optimize our representation framework for lossless random walks in large-scale road networks.
- We conduct extensive experiments involving two real-world urban road networks. The experimental results of the estimated time of arrival (ETA) task verify the effectiveness and efficiency of the proposed framework.
2. Related Works and Motivations
2.1. Related Works
2.2. Motivations
3. Methodology
3.1. Preliminaries
3.2. Large-Scale Road Network Organization
- The complexity of each subgraph should be approximately uniformly distributed.
- The subgraphs should meet the needs of parallel computing and lossless random walks.
- Hence, we can define the objective function as:
- First, all the nodes are treated as independent subgraphs, representing the results of first-step partition , and the objective function is calculated in the first step.
- Then, two random subgraphs are merged that satisfy based on the previous partition result, and the objective function is calculated after the corresponding merge operation in this step.
- The subgraph set corresponding to the maximization of is selected as the result of this partition step , and the objective function is updated to .
- The above two steps are repeated. When the number of partition steps reaches , the partition result is selected, where k satisfies , as the optimal subgraph partition result.
3.3. Multiview Random Walk
3.4. Learning Representations
4. Experiments with a Real-World Dataset
4.1. Real-World Dataset
4.2. Baselines and Downstream Traffic Tasks for Performance Evaluation
4.3. Experimental Settings
4.4. Efficiency Evaluation of Large-Scale Road Network Organization
4.5. Performance Evaluation in Downstream Traffic Tasks
5. Analysis and Discussions
5.1. Information Evaluation of the Representations
5.2. Effect of Topology and Human Mobility Information
5.3. Hyperparameter Sensitivity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm A1: Multiview Random Walk. |
Input: |
(a) Matrix |
(b) Hyperparameters and L |
(c) Subgraphs } |
(d) Patches } |
Output: |
(a) random walk sequences |
Variables: |
: index of node in ; : index of the sequence generated by the random walk process based on the same start node; : index of the node in one sequence; : index of random walk index; : sampled node in step . |
Method: |
1. //initialization |
2. Ifthen |
3. Select as the start node |
4. If then |
5. Set as and append to |
6. →0, →0 |
7. For from 1 to L |
8. If } then |
9. Sample the next node based on utilizing the intrasubgraph index |
10. Append to sequence |
11. Else |
12. Sample the next node based on utilizing the intersubgraph index |
13. Append to sequence |
14. End if |
15. t →t + 1 |
16. End for |
17. → + 1 |
18. End if |
19. i → i + 1 |
20. End if |
21. Return |
References
- Wang, M.X.; Lee, W.C.; Fu, T.Y.; Yu, G. On representation learning for road networks. ACM Trans. Intell. Syst. Technol. 2020, 12, 1–27. [Google Scholar] [CrossRef]
- Chen, K.; Deng, M.; Shi, Y. A temporal directed graph convolution network for traffic forecasting using taxi trajectory data. ISPRS Int. J. Geo-Inf. 2021, 10, 624. [Google Scholar] [CrossRef]
- Hong, H.; Lin, Y.; Yang, X.; Li, Z.; Fu, K.; Wang, Z.; Qie, X.; Ye, J. HetETA: Heterogeneous information network embedding for estimating time of arrival. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, CA, USA, 6–10 July 2020; pp. 2444–2454. [Google Scholar]
- Derrow-Pinion, A.; She, J.; Wong, D.; Lange, O.; Hester, T.; Perez, L.; Nunkesser, M.; Lee, S.; Guo, X.; Wiltshire, B.; et al. ETA prediction with graph neural networks in Google maps. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Quensland, Australia, 1–5 November 2021; pp. 3767–3776. [Google Scholar]
- Liu, K.; Gao, S.; Qiu, P.; Liu, X.; Yan, B.; Lu, F. Road2Vec: Measuring traffic interactions in urban road system from massive travel routes. ISPRS Int. J. Geo-Inf. 2017, 6, 321. [Google Scholar] [CrossRef] [Green Version]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Sui, D.Z. Tobler’s first law of geography: A big idea for a small world? Ann. Assoc. Am. Geogr. 2004, 94, 269–277. [Google Scholar] [CrossRef]
- Schläpfer, M.; Dong, L.; O’Keeffe, K.; Santi, P.; Szell, M.; Salat, H.; Anklesaria, S.; Vazifeh, M.; Ratti, C.; West, G.B. The universal visitation law of human mobility. Nature 2021, 593, 522–527. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, W.; Xia, J.; Ma, Y.; Zhang, Y.; Luo, Y.; Huang, Z.; Liu, L. Location2vec: A situation-aware representation for visual exploration of urban locations. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3981–3990. [Google Scholar] [CrossRef]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Song, G.; Zhang, L.; Li, Z.; Li, Y. Large scale network embedding: A separable approach. IEEE Trans. Knowl. Data Eng. 2020, 34, 1829–1842. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Guo, W.; Gao, H.; Shi, J.; Long, B.; Zhang, L.; Chen, B.C.; Agarwal, D. Deep natural language processing for search and recommender systems. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 3199–3200. [Google Scholar]
- Nixon, M.S.; Aguado, A.S. Feature Extraction & Image Processing for Computer Vision; Academic Press: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Jepsen, T.; Jensen, C.; Nielsen, T.; Torp, K. On network embedding for machine learning on road networks: A case study on the Danish road network. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3422–3431. [Google Scholar]
- Wu, N.; Zhao, X.W.; Wang, J.; Pan, D. Learning effective road network representation with hierarchical graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 6–10 July 2020; pp. 6–14. [Google Scholar]
- Wang, M.X.; Lee, W.C.; Fu, T.Y.; Yu, G. Learning embeddings of intersections on road networks. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 5–8 November 2019; pp. 309–318. [Google Scholar]
- Crosby, H.; Damoulas, T.; Jarvis, S.A. Embedding road networks and travel time into distance metrics for urban modelling. Int. J. Geogr. Inf. Sci. 2019, 33, 512–536. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [Google Scholar] [CrossRef] [Green Version]
- Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, Boston, MA, USA, 18–21 June 1984; pp. 47–57. [Google Scholar]
- Li, A.Q.; Ahmed, A.; Ravi, S.; Smola, A.J. Reducing the sampling complexity of topic models. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 891–900. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119. [Google Scholar]
- Lou, Y.; Zhang, C.; Zheng, Y.; Xie, X.; Wang, W.; Huang, Y. Map-matching for low-sampling-rate GPS trajectories. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, DC, USA, 4–6 November 2009; pp. 352–361. [Google Scholar]
- Chen, K.; Chu, G.; Yang, X.; Shi, Y.; Lei, K.; Deng, M. HSETA: A heterogeneous and sparse data learning hybrid framework for estimating time of arrival. IEEE Trans. Intell. Transp. Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, K.; Ye, J. Learning to estimate the travel time. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 858–866. [Google Scholar]
- Fu, T.Y.; Lee, W.C. DeepIST: Deep image-based spatio-temporal network for travel time estimation. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 69–78. [Google Scholar]
- Wang, D.; Zhang, J.; Cao, W.; Li, J.; Zheng, Y. When will you arrive? Estimating travel time based on deep neural networks. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, LA, USA, 2–7 February 2018; pp. 2500–2507. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 1–5 November 2019; pp. 8026–8037. [Google Scholar]
Dataset | Number of Intersections | Number of Segments | Avg. Length | Avg. GPS Points |
---|---|---|---|---|
Shenzhen | 44,124 | 8,651,005 | 61.33 m | 1171.45 |
Xi’an | 299 | 1607 | 111.20 m | 9987.55 |
Dataset | Number of GPS Points | Number of Trajectories | Avg. Travel Time | Avg. Segments | Number of Drivers |
---|---|---|---|---|---|
Shenzhen | 743,830,968 | 1,048,576 | 834.14 s | 86.98 | 80,887 |
Xi’an | 16,050,000 | 527,155 | 315.61 s | 12.35 | 20,199 |
ETA Methods | Dataset | DeepWalk | Node2Vec | Road2Vec | Our Framework |
---|---|---|---|---|---|
MAPE/RMSE/MAE | MAPE/RMSE/MAE | MAPE/RMSE/MAE | MAPE/RMSE/MAE | ||
GRU | Shenzhen | 15.26/168.74/112.31 | 15.58/172.03/106.45 | 14.70/162.88/115.85 | 14.59/158.97/113.785 |
Xi’an | 3.53/119.48/102.50 | 5.36/104.47/90.05 | 3.20/77.11/68.95 | 2.76/54.31/43.76 | |
GRU + DNN | Shenzhen | 13.93/151.95/106.78 | 13.89/151.80/110.84 | 13.71/154.30/108.06 | 13.66/154.13/106.51 |
Xi’an | 2.69/48.88/44.26 | 2.05/31.39/27.71 | 2.39/28.62/22.04 | 1.87/23.96/19.42 | |
DeepTTE | Shenzhen | 13.92/159.96/112.31 | 13.84/152.24/106.45 | 13.82/155.28/108.0 | 13.54/152.20/106.34 |
Xi’an | 14.22/154.02/133.50 | 12.52/88.35/71.43 | 13.39/91.25/70.96 | 12.13/86.54/68.03 | |
WDR | Shenzhen | 13.53/148.29/104.07 | 13.49/151.53/105.71 | 13.50/149.52/104.53 | 13.46/147.84/103.92 |
Xi’an | 3.67/35.80/26.65 | 4.16/55.31/46.14 | 5.10/50.48/37.86 | 3.51/49.93/38.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Chu, G.; Lei, K.; Shi, Y.; Deng, M. A Multiview Representation Learning Framework for Large-Scale Urban Road Networks. Appl. Sci. 2022, 12, 6301. https://doi.org/10.3390/app12136301
Chen K, Chu G, Lei K, Shi Y, Deng M. A Multiview Representation Learning Framework for Large-Scale Urban Road Networks. Applied Sciences. 2022; 12(13):6301. https://doi.org/10.3390/app12136301
Chicago/Turabian StyleChen, Kaiqi, Guowei Chu, Kaiyuan Lei, Yan Shi, and Min Deng. 2022. "A Multiview Representation Learning Framework for Large-Scale Urban Road Networks" Applied Sciences 12, no. 13: 6301. https://doi.org/10.3390/app12136301
APA StyleChen, K., Chu, G., Lei, K., Shi, Y., & Deng, M. (2022). A Multiview Representation Learning Framework for Large-Scale Urban Road Networks. Applied Sciences, 12(13), 6301. https://doi.org/10.3390/app12136301