EEG Signals Based Internet Addiction Diagnosis Using Convolutional Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Preparation
2.2. Proposed CNN Architecture
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.Y.; Sun, Y.; Meng, S.Q.; Bao, Y.P.; Cheng, J.L.; Chang, X.W.; Ran, M.S.; Sun, Y.K.; Kosten, T.; Strang, J.; et al. Internet Addiction Increases in the General Population During COVID-19: Evidence from China. Am. J. Addict. 2021, 30, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Lai, C.M.; Watanabe, H.; Kim, D.I.; Bahar, N.; Ramos, M.; Young, K.S.; Ho, R.C.M.; Aum, N.R.; Cheng, C. Epidemiology of Internet Behaviors and Addiction Among Adolescents in Six Asian Countries. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Park, S.M.; Lee, J.; Hwang, J.Y.; Jung, H.Y.; Choi, S.W.; Kim, D.J.; Oh, S.; Lee, J.Y. Resting-state beta and gamma activity in Internet addiction. Int. J. Psychophysiol. 2013, 89, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Doborjeh, M.G.; Wang, G.Y.; Kasabov, N.K.; Kydd, R.; Russell, B. A Spiking Neural Network Methodology and System for Learning and Comparative Analysis of EEG Data from Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects. IEEE Trans. Biomed. Eng. 2015, 63, 1830–1841. [Google Scholar] [CrossRef] [PubMed]
- Bottcher, S.; Bruno, E.; Epitashvili, N.; Dümpelmann, M.; Zabler, N.; Glasstetter, M.; Ticcinelli, V.; Thorpe, S.; Lees, S.; Laerhoven, K.V.; et al. Intra- and Inter-Subject Perspectives on the Detection of Focal Onset Motor Seizures in Epilepsy Patients. Sensors 2022, 22, 3318. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, S.E.; Salido-Ruiz, R.A.; Torres-Ramos, S.; Román-Godínez, I. Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals. Sensors 2022, 22, 3066. [Google Scholar] [CrossRef]
- Shahbakhti, M.; Beiramvand, M.; Rejer, I.; Augustyniak, P.; Broniec-Wójcik, A.; Wierzchon, M.; Marozas, V. Simultaneous Eye Blink Characterization and Elimination from Low-Channel Prefrontal EEG Signals Enhances Driver Drowsiness Detection. IEEE J. Biomed. Health 2022, 26, 2168–2194. [Google Scholar] [CrossRef] [PubMed]
- Ogino, M.; Mitsukura, Y. Portable Drowsiness Detection through Use of a Prefrontal Single-Channel Electroencephalogram. Sensors 2018, 18, 4477. [Google Scholar] [CrossRef] [Green Version]
- Shahbakhti, M.; Beiramvand, M.; Eigirdas, T.; Solé-Casals, J.; Wierzchon, M.; Broniec-Wójcik, A.; Augustyniak, P.; Marozas, V. Discrimination of Wakefulness from Sleep Stage I Using Nonlinear Features of a Single Frontal EEG Channel. IEEE. Sens. J. 2022, 22, 1558–1748. [Google Scholar] [CrossRef]
- Hussain, I.; Hossain, M.A.; Jany, R.; Bari, M.A.; Uddin, M.; Kamal, A.R.M.; Ku, Y.; Kim, J.S. Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages. Sensors 2022, 22, 3079. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, H.; Bo, S. Altered topological connectivity of internet addiction in resting-state EEG through network analysis. Addict. Behav. 2019, 95, 49–57. [Google Scholar] [CrossRef]
- Gross, J.; Baumgartl, H.; Buettner, R. A Novel Machine Learning Approach for High-Performance Diagnosis of Premature Internet Addiction Using the Unfolded EEG Spectra. In Proceedings of the 25th Americas Conference on Information Systems (AMCIS), Salt Lake City, UT, USA, 12–16 August 2020. [Google Scholar]
- Dreiseitl, S.; Ohno-Machado, L. Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Erguzel, T.T.; Noyan, C.O.; Eryilmaz, G.; Ünsalver, B.Ö.; Cebi, M.; Tas, C.; Dilbaz, N.; Tarhan, N. Binomial Logistic Regression and Artificial Neural Network Methods to Classify Opioid-Dependent Subjects and Control Group Using Quantitative EEG Power Measures. Clin. EEG Neurosci. 2019, 50, 667–679. [Google Scholar] [CrossRef]
- Capecci, E.; Kasabov, N.; Wang, G.Y. Analysis of connectivity in NeuCube spiking neural network models trained on EEG data for the understanding of functional changes in the brain: A case study on opiate dependence treatment. Neural Netw. 2015, 68, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 2018, 100, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Tabar, Y.R.; Halici, U. A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 2016, 14, 016003. [Google Scholar] [CrossRef]
- Lan, M.; Minett, J.W.; Blu, T.; Wang, W.S.-Y. Resting State EEG-based biometrics for individual identification using convolutional neural networks. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 2848–2851. [Google Scholar]
- Yang, H.; Han, J.; Min, K. A Multi-Column CNN Model for Emotion Recognition from EEG Signals. Sensors 2019, 19, 4736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Cai, J.; Fan, S.Z.; Abbod, M.F.; Shieh, J.-S.; Kung, Y.; Lin, L. Spectrum Analysis of EEG Signals Using CNN to Model Patient’s Consciousness Level Based on Anesthesiologists’ Experience. IEEE Access 2019, 7, 53731–53742. [Google Scholar] [CrossRef]
- Ke, H.; Chen, D.; Shah, T.; Liu, X.; Zhang, X.; Zhang, L.; Li, X. Cloud-aided online EEG classification system for brain healthcare: A case study of depression evaluation with a lightweight CNN. Softw. Pract. Exp. 2018, 50, 596–610. [Google Scholar] [CrossRef]
- Gu, X.; Yang, B.; Li, D.; Xu, D.; Gu, C. Research on the Intelligent Evaluation of Addiction Degree and New Method of Rehabilitation of Drug Addicts. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 1135–1139. [Google Scholar]
- Li, D.; Yang, B.; Gu, X.; Kong, D.; Zan, P. Drug Addiction Detection Algorithm Based on CNN-BN. In Proceedings of the 9th International Conference on Computing and Pattern Recognition, Xiamen, China, 30 October–1 November 2020; pp. 96–100. [Google Scholar]
- Rubaiyat, N.; Apsara, A.I.; Chaki, D.; Arif, H.; Israt, L.; Kabir, L.; Alam, M.G.R. Classification of Depression, Internet Addiction and Prediction of Self-esteem among University Students. In Proceedings of the International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2020; p. 19472529. [Google Scholar]
- Siste, K.; Hanafi, E.; Sen, L.T.; Murtani, B.J.; Christian, H.; Limawan, A.P.; Siswidiani, L.P.; Adrian. Implications of COVID-19 and Lockdown on Internet Addiction among Adolescents: Data from a Developing Country. Front. Psychiatry 2021, 12, 665675. [Google Scholar] [CrossRef]
- Eichenberg, C.; Schott, M.; Schroiffet, A. Problematic Smartphone Use—Comparison of Students with and Without Problematic Smartphone Use in Light of Personality. Front. Psychiatry 2021, 11, 599241. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Li, H.; Yao, D.; Sun, B.; Gong, J.; Dai, Y.; Wen, C.; Zhang, L.; Zhang, C.; et al. Identifying Internet Addiction and Evaluating the Efficacy of Treatment Based on Functional Connectivity Density: A Machine Learning Study. Front. Neurosci. 2021, 15, 665578. [Google Scholar] [CrossRef]
- Guo, D.; Li, G.; Miao, J.; Shen, Y. A smartphone-based calibration-free portable urinalysis device. J. Cent. South Univ. 2022, 28, 3829–3837. [Google Scholar] [CrossRef]
- Herman, K.; Ciechanowski, L.; Przegalińska, A. Emotional Well-Being in Urban Wilderness: Assessing States of Calmness and Alertness in Informal Green Spaces (IGSs) with Muse—Portable EEG Headband. Sustainability 2021, 13, 2212. [Google Scholar] [CrossRef]
- Gao, Z.; Cui, X.; Wan, W.; Qin, Z.; Gu, Z. Signal Quality Investigation of a New Wearable Frontal Lobe EEG Device. Sensors 2022, 22, 1898. [Google Scholar] [CrossRef] [PubMed]
- Babayan, A.; Erbey, M.; Kumral, D.; Reinelt, J.D.; Reiter, A.M.F.; Röbbig, J.; Schaare, H.L.; Uhlig, M.; Anwander, A.; Bazin, P.; et al. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci. Data 2019, 6, 180308. [Google Scholar] [CrossRef] [PubMed]
- Mendes, N.; Oligschläger, S.; Lauckner, M.E.; Golchert, J.; Huntenburg, J.M.; Falkiewicz, M.; Ellamil, M.; Krause, S.; Baczkowski, B.M.; Cozatl, R.; et al. A functional connectome phenotyping dataset including cognitive state and personality measures. Sci. Data 2019, 6, 180307. [Google Scholar] [CrossRef] [Green Version]
- Phadikar, S.; Sinha, N.; Ghosh, R.; Ghaderpour, E. Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter. Sensors 2022, 22, 2948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; You, B.; Lang, X.; Zhou, Y.; An, F.; Dai, Y.; Liu, Y. Efficient Rejection of Artifacts for Short-Term Few-Channel EEG Based on Fast Adaptive Multidimensional Sub-Bands Blind Source Separation. IEEE Trans. Instrum. Meas. 2021, 70, 1–16. [Google Scholar] [CrossRef]
- Wibawa, W.S.; Fitriah, N.; Christia, M.; Bintari, D.R. Internet Addiction and Mental Health Prediction Using Ensemble Learning Based on Web Browsing History. In Proceedings of the ICSIM ’20: Proceedings of the 3rd International Conference on Software Engineering and Information Management, Sydney, NSW, Australia, 12–15 January 2020; pp. 155–159. [Google Scholar]
- Rho, M.J.; Jeong, J.E.; Chun, J.W.; Cho, H.; Jung, D.J.; Choi, I.Y.; Kim, D.J. Predictors and patterns of problematic Internet game use using a decision tree model. J. Behav. Addict. 2016, 5, 500–509. [Google Scholar] [CrossRef] [Green Version]
- Ko, C.H.; Yen, C.F.; Yen, C.N.; Yen, J.Y.; Chen, C.C.; Chen, S.H. Screening for Internet Addiction: An Empirical Study on Cut-off Points for the Chen Internet Addiction Scale. Kaohsiung J. Med. Sci. 2009, 21, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Ko, C.H.; Yen, C.F.; Chen, S.H.; Yang, M.J.; Lin, H.C.; Yen, C.F. Proposed diagnostic criteria and the screening and diagnosing tool of Internet addiction in college students. Compr. Psychiat. 2009, 50, 378–384. [Google Scholar] [CrossRef] [PubMed]
Type of Inputs | Sensitivity | Precision | Specificity | Accuracy |
---|---|---|---|---|
Raw data | 0.932 | 0.749 | 0.692 | 0.811 |
Full spectral power | 0.888 | 0.865 | 0.864 | 0.876 |
Alpha-beta-gamma spectral power | 0.619 | 0.746 | 0.725 | 0.677 |
Reference | Classification Model | Data Source | Accuracy Result |
---|---|---|---|
Internet addiction [this work] | CNN | EEG | 87.59% |
Internet addiction [12] | SVM | EEG | 82.50% |
Internet addiction [24] | RF | Survey Data | 83.00% |
Internet addiction [35] | SVM | Browsing Histories | 66.67% |
Internet gaming disorder [36] | Decision Tree | Survey Data | 70.41% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Yang, J.; Chen, Y.-H.; Miao, J.; Sawan, M. EEG Signals Based Internet Addiction Diagnosis Using Convolutional Neural Networks. Appl. Sci. 2022, 12, 6297. https://doi.org/10.3390/app12136297
Sun S, Yang J, Chen Y-H, Miao J, Sawan M. EEG Signals Based Internet Addiction Diagnosis Using Convolutional Neural Networks. Applied Sciences. 2022; 12(13):6297. https://doi.org/10.3390/app12136297
Chicago/Turabian StyleSun, Siqi, Jie Yang, Yun-Hsuan Chen, Jiaqi Miao, and Mohamad Sawan. 2022. "EEG Signals Based Internet Addiction Diagnosis Using Convolutional Neural Networks" Applied Sciences 12, no. 13: 6297. https://doi.org/10.3390/app12136297
APA StyleSun, S., Yang, J., Chen, Y.-H., Miao, J., & Sawan, M. (2022). EEG Signals Based Internet Addiction Diagnosis Using Convolutional Neural Networks. Applied Sciences, 12(13), 6297. https://doi.org/10.3390/app12136297