An Unsupervised Weight Map Generative Network for Pixel-Level Combination of Image Denoisers
Abstract
:1. Introduction
- Compared to CsNet [28], which sets a stand-alone weight for each initial denoised image, we introduce a finer combining granularity scale in this study. Specifically, we use a deep learning network to set appropriate weights for each pixel, which contain information about the contribution of the initial denoised images on the combined image, ensuring that it can retain the details well. We call this a pixel-level combination strategy.
- Conventional supervised CNN-based denoising methods need noisy–clean paired images to achieve high performance. In our study, we use an unsupervised learning method to achieve the optimal weight maps without noisy–clean paired images [29]. It reduces the cost of collecting considerable training pairs for training and makes the generalization capability of our method excellent.
- The proposed method can be easily extended, allowing the free combination of several initial denoised images generated by any denoiser. Therefore, in our study, we performed combination experiments with different classes as well as different numbers of denoised images to find the complementarity between different denoising methods. Currently, researchers are attempting to improve the denoising performance. As more efficient denoising methods are proposed, in the future, our approach will still perform well. We can employ several different methods that are more efficient and complementary to each other to enhance the denoising effect.
2. Related Work
2.1. Consensus Neural Network
2.2. Structural Patch Decomposition Approach
3. Methodology
3.1. Basic Concept
3.2. Unsupervised Weight Map Generative Network
3.3. Backbone Network
3.4. Loss Function
4. Experiments
4.1. Datasets and Experimental Setup
4.2. Selection of Combination Patterns
4.3. Ablation Experiments
4.4. Comparison with Other Combination Strategies
4.5. Experimental Results with Other Denoising Methods
4.6. Visual Comparisons
4.7. Low-Light Image Enhancement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Healey, G.E.; Kondepudy, R. Radiometric CCD camera calibration and noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938. [Google Scholar]
- Pandey, B.K.; Pandey, D.; Wariya, S.; Agarwal, G. A deep neural network-based approach for extracting textual images from deteriorate images. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2021, 8, e3. [Google Scholar] [CrossRef]
- Ignatov, A.; Byeoung-Su, K.; Timofte, R.; Pouget, A. Fast camera image denoising on mobile gpus with deep learning, mobile ai 2021 challenge: Report. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2515–2524. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Sun, G.; Kong, Y.; Fu, Y. Accurate and fast image denoising via attention guided scaling. IEEE Trans. Image Process. 2021, 30, 6255–6265. [Google Scholar] [CrossRef]
- Fan, C.M.; Liu, T.J.; Liu, K.H. SUNet: Swin transformer UNet for image denoising. arXiv 2022, arXiv:2202.14009. [Google Scholar]
- Liu, Y.; Wang, Z.; Zeng, Y.; Zeng, H.; Zhao, D. PD-GAN: Perceptual-details GAN for extremely noisy low light image enhancement. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 1840–1844. [Google Scholar]
- Chen, S.; Xu, S.; Chen, X.; Li, F. Image denoising using a novel deep generative network with multiple target images and adaptive termination condition. Appl. Sci. 2021, 11, 4803. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar]
- Mosseri, I.; Zontak, M.; Irani, M. Combining the power of internal and external denoising. In Proceedings of the IEEE international conference on computational photography (ICCP), Cambridge, MA, USA, 19–21 April 2013; pp. 1–9. [Google Scholar]
- Shreyamsha Kumar, B. Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 2013, 7, 1211–1227. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image restoration by sparse 3D transform-domain collaborative filtering. In Image Processing: Algorithms and Systems VI; SPIE: Bellingham, WA, USA, 2008; Volume 6812, pp. 62–73. [Google Scholar]
- Sharma, A.; Chaurasia, V. MRI denoising using advanced NLM filtering with non-subsampled shearlet transform. Signal Image Video Process. 2021, 15, 1331–1339. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, L.; Shi, G.; Li, X. Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 2012, 22, 1620–1630. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; He, X.; Wang, C.; Zhao, Z. Adaptive consistency prior based deep network for image denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8596–8606. [Google Scholar]
- Wu, C.; Gao, T. Image denoise methods based on deep learning. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1883, p. 012112. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning; PMLR: New York, NY, USA, 2015; pp. 448–456. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Yan, Z.; Zhang, K.; Zuo, W.; Zhang, L. Toward convolutional blind denoising of real photographs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1712–1722. [Google Scholar]
- Yue, Z.; Yong, H.; Zhao, Q.; Meng, D.; Zhang, L. Variational denoising network: Toward blind noise modeling and removal. arXiv 2019, arXiv:1908.11314. [Google Scholar]
- Liang, Q.; Cassayre, F.; Owsianko, H.; Helou, M.E.; Süsstrunk, S. Image denoising with control over deep network hallucination. arXiv 2022, arXiv:2201.00429. [Google Scholar]
- Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131, 251–275. [Google Scholar] [CrossRef]
- Huang, T.; Li, S.; Jia, X.; Lu, H.; Liu, J. Neighbor2neighbor: Self-supervised denoising from single noisy images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14781–14790. [Google Scholar]
- Tian, C.; Xu, Y.; Zuo, W. Image denoising using deep CNN with batch renormalization. Neural Netw. 2020, 121, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar]
- Choi, J.H.; Elgendy, O.A.; Chan, S.H. Optimal combination of image denoisers. IEEE Trans. Image Process. 2019, 28, 4016–4031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Gong, K.; Guo, N.; Wu, C.; Meng, X.; Kim, K.; Zheng, K.; Wu, Z.; Fu, L.; Xu, B.; et al. PET image denoising using unsupervised deep learning. Eur. J. Nuclear Med. Mol. Imaging 2019, 46, 2780–2789. [Google Scholar] [CrossRef]
- Jaggi, M. Convex optimization without projection steps. arXiv 2011, arXiv:1108.1170. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Li, H.; Yong, H.; Wang, Z.; Meng, D.; Zhang, L. Robust multi-exposure image fusion: A structural patch decomposition approach. IEEE Trans. Image Process. 2017, 26, 2519–2532. [Google Scholar] [CrossRef]
- Krull, A.; Vičar, T.; Prakash, M.; Lalit, M.; Jug, F. Probabilistic noise2void: Unsupervised content-aware denoising. Front. Comput. Sci. 2020, 2, 5. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Gao, X.; Lu, W.; Tao, D.; Li, X. Image quality assessment based on multiscale geometric analysis. IEEE Trans. Image Process. 2009, 18, 1409–1423. [Google Scholar] [PubMed]
- Xu, H.; Ma, J.; Jiang, J.; Guo, X.; Ling, H. U2Fusion: A unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Duanmu, Z.; Zhu, H.; Fang, Y.; Wang, Z. Deep guided learning for fast multi-exposure image fusion. IEEE Trans. Image Process. 2019, 29, 2808–2819. [Google Scholar] [CrossRef]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.; Nadler, B. Natural image denoising: Optimality and inherent bounds. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2833–2840. [Google Scholar]
- Levin, A.; Nadler, B.; Durand, F.; Freeman, W.T. Patch complexity, finite pixel correlations and optimal denoising. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 73–86. [Google Scholar]
- Lin, W.; Kuo, C.C.J. Perceptual visual quality metrics: A survey. J. Vis. Commun. Image Represent. 2011, 22, 297–312. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q. Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 2010, 20, 1185–1198. [Google Scholar] [CrossRef]
- Rani, S.; Kumar, M. Contrast enhancement using improved adaptive gamma correction with weighting distribution technique. Int. J. Comput. Appl. 2014, 101. [Google Scholar] [CrossRef]
- Fu, X.; Zeng, D.; Huang, Y.; Liao, Y.; Ding, X.; Paisley, J. A fusion-based enhancing method for weakly illuminated images. Signal Process. 2016, 129, 82–96. [Google Scholar] [CrossRef]
- Ying, Z.; Li, G.; Ren, Y.; Wang, R.; Wang, W. A new image contrast enhancement algorithm using exposure fusion framework. In International Conference on Computer Analysis of Images and Patterns; Springer: Berlin/Heidelberg, Germany, 2017; pp. 36–46. [Google Scholar]
- Wu, Y.; Song, W.; Zheng, J.; Liu, F. Noisy low-Light image enhancement using reflectance similarity prior. In Proceedings of the 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 6–9 December 2020; Volume 1, pp. 160–164. [Google Scholar]
- Cai, J.; Gu, S.; Zhang, L. Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 2018, 27, 2049–2062. [Google Scholar] [CrossRef]
FFDNet | DnCNN | NCSR | VDNet | WNNM | |
---|---|---|---|---|---|
BM3D | 30.82 | 30.60 | 30.36 | 30.31 | 30.52 |
FFDNet | — | 29.82 | 30.54 | 30.48 | 30.00 |
DnCNN | — | — | 30.50 | 30.45 | 29.93 |
NCSR | — | — | — | 30.23 | 30.37 |
VDNet | — | — | — | — | 30.44 |
Number of Denoisers | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
BM3D | ✓ | ✓ | ✓ | ✓ | ✓ |
FFDNet | ✓ | ✓ | ✓ | ✓ | ✓ |
DnCNN | ✓ | ✓ | ✓ | ✓ | |
WNNM | ✓ | ✓ | ✓ | ||
NCSR | ✓ | ✓ | |||
VDNet | ✓ | ||||
PSNR | 30.82 | 30.71 | 30.65 | 30.99 | 31.15 |
35.50 | 35.17 | 36.44 | 36.46 | |
30.03 | 29.85 | 30.81 | 30.82 | |
27.79 | 27.48 | 28.45 | 28.49 | |
Average | 31.11 | 30.83 | 31.90 | 31.92 |
Noise Level | ||||||
---|---|---|---|---|---|---|
dataset | common10 | |||||
CsNet | 34.62 | 31.40 | 29.75 | 28.55 | 27.61 | 26.79 |
SPD | 34.76 | 31.37 | 29.67 | 28.41 | 27.54 | 26.77 |
U2Fusion | 29.66 | 28.52 | 27.63 | 26.83 | 26.24 | 25.67 |
MEFNet | 35.04 | 31.56 | 29.81 | 28.54 | 27.58 | 26.79 |
Proposed | 36.46 | 31.81 | 30.82 | 28.78 | 28.49 | 27.03 |
dataset | BSD | |||||
CsNet | 33.59 | 29.67 | 27.90 | 26.75 | 25.91 | 25.20 |
SPD | 33.57 | 29.59 | 27.80 | 26.60 | 25.80 | 25.13 |
U2Fusion | 28.47 | 27.14 | 26.14 | 25.36 | 24.75 | 24.25 |
MEFNet | 34.19 | 30.03 | 28.06 | 26.80 | 25.92 | 25.25 |
Proposed | 34.22 | 30.82 | 28.16 | 26.91 | 26.04 | 25.35 |
Noise Level | BM3D | FFDNet | NCSR | DnCNN | WNNM | VDNet | CsNet | SPD | U2Fusion | MEFNet | Proposed |
---|---|---|---|---|---|---|---|---|---|---|---|
34.81 | 34.83 | 34.81 | 34.94 | 34.94 | 34.63 | 34.62 | 34.76 | 29.66 | 35.04 | 36.46 | |
31.38 | 31.68 | 31.38 | 31.69 | 31.61 | 31.53 | 31.40 | 31.37 | 28.52 | 31.56 | 31.81 | |
29.53 | 29.92 | 29.43 | 29.83 | 29.80 | 29.78 | 29.75 | 29.67 | 27.63 | 29.81 | 30.82 | |
28.10 | 28.68 | 28.06 | 28.52 | 28.48 | 28.57 | 28.55 | 28.41 | 26.83 | 28.54 | 28.78 | |
27.47 | 27.71 | 27.02 | 27.56 | 27.51 | 27.64 | 27.61 | 27.54 | 26.24 | 27.58 | 28.49 | |
26.33 | 26.90 | 26.08 | 26.65 | 26.68 | 26.88 | 26.79 | 26.77 | 25.67 | 26.79 | 27.03 | |
Average | 29.60 | 29.96 | 29.86 | 29.84 | 29.84 | 29.84 | 29.79 | 29.75 | 27.43 | 29.89 | 30.14 |
Noise Level | BM3D | FFDNet | NCSR | DnCNN | WNNM | VDNet | CsNet | SPD | U2Fusion | MEFNet | Proposed |
---|---|---|---|---|---|---|---|---|---|---|---|
33.25 | 33.56 | 33.42 | 33.69 | 33.53 | 33.43 | 33.59 | 33.57 | 28.47 | 34.19 | 34.22 | |
29.14 | 29.65 | 29.58 | 29.70 | 29.73 | 29.93 | 29.67 | 29.59 | 27.14 | 30.03 | 30.82 | |
27.34 | 27.88 | 27.60 | 27.87 | 27.81 | 28.08 | 27.90 | 27.80 | 26.14 | 28.06 | 28.16 | |
26.11 | 26.73 | 26.27 | 26.87 | 26.54 | 26.87 | 26.75 | 26.60 | 25.36 | 26.80 | 26.91 | |
25.28 | 25.89 | 25.35 | 25.85 | 25.63 | 25.99 | 25.91 | 25.80 | 24.75 | 25.92 | 26.04 | |
24.30 | 25.23 | 24.59 | 25.13 | 24.92 | 25.31 | 25.20 | 25.13 | 24.25 | 25.25 | 25.35 | |
Average | 27.63 | 28.16 | 27.80 | 28.19 | 28.03 | 28.27 | 28.17 | 28.08 | 26.02 | 28.38 | 28.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Luo, J.; Xu, S.; Chen, X.; Xiao, N. An Unsupervised Weight Map Generative Network for Pixel-Level Combination of Image Denoisers. Appl. Sci. 2022, 12, 6227. https://doi.org/10.3390/app12126227
Yu L, Luo J, Xu S, Chen X, Xiao N. An Unsupervised Weight Map Generative Network for Pixel-Level Combination of Image Denoisers. Applied Sciences. 2022; 12(12):6227. https://doi.org/10.3390/app12126227
Chicago/Turabian StyleYu, Lijia, Jie Luo, Shaoping Xu, Xiaojun Chen, and Nan Xiao. 2022. "An Unsupervised Weight Map Generative Network for Pixel-Level Combination of Image Denoisers" Applied Sciences 12, no. 12: 6227. https://doi.org/10.3390/app12126227
APA StyleYu, L., Luo, J., Xu, S., Chen, X., & Xiao, N. (2022). An Unsupervised Weight Map Generative Network for Pixel-Level Combination of Image Denoisers. Applied Sciences, 12(12), 6227. https://doi.org/10.3390/app12126227