Network Structure Influence on Tourism Industrial Performance: A Network Perspective to Explain the Global Tourism Development
Abstract
:1. Introduction
2. Literature Review
2.1. Tourism Networks and Network Structure Effects
2.2. The Global Tourism Networks
3. Materials and Methods
3.1. Data Source
3.2. Method
3.2.1. Network Structure and Performance Measurements
3.2.2. The Correlation Tests
3.2.3. Gravity Model Building
4. Results
4.1. The Structure Characteristics of GTN from 1995 to 2019
4.2. The Effects of Global Network Structure on Tourism Industrial Performances
4.3. The Effects of Individual Network Structure on Tourism Performances
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GNT | Global Tourism Network |
DE | Density |
CLC | Clustering Coefficient |
APL | The Average Path Length |
SW | Small-Worldness |
DC | Degree Centrality |
CC | Closeness Centrality |
BC | Betweenness Centrality |
EC | Eigenvector Centrality |
LCLC | The Local Clustering Coefficient |
AITA | The Amount of Average International Tourism Arrivals |
ITA | The Number of International Tourism Arrivals from a Country |
dis | The Distance Between Each Two Regions |
References
- Martens, P.; Rotmans, J. Transitions in a globalising world. Futures 2005, 37, 1133–1144. [Google Scholar] [CrossRef] [Green Version]
- Clancy, M. Commodity chains, services and development: Theory and preliminary evidence from the tourism industry. Rev. Int. Politi. Econ. 1998, 5, 122–148. [Google Scholar] [CrossRef]
- Middleton, V.T.C.; Clarke, J.R. Marketing in Travel and Tourism; Routledge: London, UK, 2012. [Google Scholar]
- Tovmasyan, G. Tourism development trends in the world. Eur. J. Econ. Stud. 2016, 3, 429–434. [Google Scholar]
- Chung, M.G.; Herzberger, A.; Frank, K.A.; Liu, J. International Tourism Dynamics in a Globalized World: A Social Network Analysis Approach. J. Travel. Res. 2019, 59, 387–403. [Google Scholar] [CrossRef]
- Baggio, R. Network science and tourism—the state of the art. Tour. Rev. 2017, 72, 120–131. [Google Scholar] [CrossRef]
- Farrell, B.H.; Twining-Ward, L. Reconceptualizing tourism. Ann. Tour. Res. 2004, 31, 274–295. [Google Scholar] [CrossRef]
- Tribe, J.J.; Liburd, J. The tourism knowledge system. Ann. Tour. Res. 2016, 57, 44–61. [Google Scholar] [CrossRef]
- Zee, E.V.D.; Vanneste, D. Tourism networks unraveled: A review of the literature on networks in tourism management studies. Tour. Manag. Perspect. 2015, 15, 46–56. [Google Scholar]
- Saxena, G. Relationships, networks and the learning regions: Case evidence from the Peak District National Park. Tour. Manag. 2005, 26, 277–289. [Google Scholar] [CrossRef]
- Cravens, D.W.; Piercy, N.F. Relationship Marketing and Collaborative Networks in Service Organizations. Int. J. Serv Ind Manag. 1994, 5, 39–53. [Google Scholar] [CrossRef]
- Rotondo, F.; Fadda, N. The influence of being part of a tourist network on hotels’ financial performance. Int. J. Hosp. Manag. 2019, 82, 335–344. [Google Scholar] [CrossRef]
- Owen-Smith, J.; Powell, W.W. Networks and institutions. In The Sage Handbook of Organizational Institutionalism; SAGE Publication: Thousand Oaks, CA, USA, 2008; pp. 596–623. [Google Scholar]
- Baggio, R. Collaboration and cooperation in a tourism destination: A network science approach. Curr. Issues Tour. 2011, 14, 183–189. [Google Scholar] [CrossRef]
- Kostelić, K.; Turk, M. Topology of the World Tourism Web. Appl. Sci. 2021, 11, 2253. [Google Scholar] [CrossRef]
- Barkoczi, D.; Galesic, M. Social learning strategies modify the effect of network structure on group performance. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, W.; Vidal-Alaball, J.; Vilaseca, J.M. A Social Network Analysis of Twitter Data Related to Blood Clots and Vaccines. Int. J. Environ. Res. Public Health 2022, 19, 4584. [Google Scholar] [CrossRef]
- Tirole, J. The Theory of Industrial Organization; MIT Press: Cambridge, MA, USA, 1988; p. 12. [Google Scholar]
- Granados, F.J.; Knoke, D. Organizational status growth and structure: An alliance network analysis. Soc. Netw. 2013, 35, 62–74. [Google Scholar] [CrossRef]
- Siciliano, M.D.; Welch, E.W.; Feeney, M.K. Network exploration and exploitation: Professional network churn and scientific production. Soc. Netw. 2018, 52, 167–179. [Google Scholar] [CrossRef]
- Guo, X.; Chen, Q. Heterogeneous Returns to Social Networks: Effects on Earnings and Job Satisfaction in the Chinese Labor Market. Int. J. Environ. Res. Public Health 2022, 19, 5700. [Google Scholar] [CrossRef]
- Wang, X.; Wang, R.; Yu, Q.; Liu, H.; Liu, W.; Ma, J.; Niu, T.; Yang, L. Study on the Structural Properties of an Ecospatial Network in Inner Mongolia and Its Relationship with NPP. Appl. Sci. 2022, 12, 4872. [Google Scholar] [CrossRef]
- Christopher, M.; Payne, A.; Ballantyne, D. Relationship Marketing; Taylor & Francis: Abingdon, UK, 2013; pp. 35–38. [Google Scholar]
- Hall, C.M. Tourism: Rethinking the Social Science of Mobility; Pearson Education: London, UK, 2005; p. 12. [Google Scholar]
- Zach, F.; Racherla, P. Assessing the value of collaborations in tourism networks: A case study of Elkhart County, Indiana. J. Travel. Tour. Mark. 2011, 28, 97–110. [Google Scholar] [CrossRef]
- Lynch, P.; Halcro, K.; Johns, N.; Buick, I. Developing small and micro-enterprise networks to build profitable tourist destinations. In Destination Development Conference; ETOUR, Mid-Sweden University: Ostersund, Sweden, 2000. [Google Scholar]
- Lynch, P.; Morrison, A. The role of networks, in Micro-Clusters and Networks; Routledge: London, UK, 2006; pp. 63–82. [Google Scholar]
- Baggio, R.; Cooper, C. Knowledge transfer in a tourism destination: The effects of a network structure. Serv. Ind. J. 2010, 30, 1757–1771. [Google Scholar] [CrossRef]
- Meriläinen, K.; Lemmetyinen, A. Destination network management: A conceptual analysis. Tour. Rev. 2011, 66, 25–31. [Google Scholar] [CrossRef]
- Dredge, D. Networks, conflict and collaborative communities. J. Sustain. Tour. 2006, 14, 562–581. [Google Scholar] [CrossRef]
- Wasserman, S.; Galaskiewicz, J. Advances in Social Network Analysis: Research in the Social and Behavioral Sciences; Sage: Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Morrison, A.; Lynch, P.; Johns, N. International tourism networks. Int. J. Contemp. Hosp. Manag. 2004, 16, 197–202. [Google Scholar] [CrossRef]
- Halme, M. Learning for sustainable development in tourism networks. Bus. Strategy Environ. 2001, 10, 100–114. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Sandström, A.; Carlsson, L. The performance of policy networks: The relation between network structure and network performance. Policy Stud. J. 2008, 36, 497–524. [Google Scholar] [CrossRef]
- Zaheer, A.; Bell, G.G. Benefiting from network position: Firm capabilities, structural holes, and performance. Strateg Manag. J. 2005, 26, 809–825. [Google Scholar] [CrossRef]
- Grund, T.U. Network structure and team performance: The case of English Premier League soccer teams. Soc. Netw. 2012, 34, 682–690. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J. The effect of network structure on performance in South Korea SMEs: The moderating effects of absorptive capacity. Sustainability 2018, 10, 3174. [Google Scholar] [CrossRef] [Green Version]
- Pavlovich, K. The evolution and transformation of a tourism destination network: The Waitomo Caves, New Zealand. Tour. Manag. 2003, 24, 203–216. [Google Scholar] [CrossRef]
- Aarstad, J.; Ness, H.; Haugland, S.A. Innovation, uncertainty, and inter-firm shortcut ties in a tourism destination context. Tour. Manag. 2015, 48, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Zach, F.J.; Hill, T.L. Network, knowledge and relationship impacts on innovation in tourism destinations. Tour. Manag. 2017, 62, 196–207. [Google Scholar] [CrossRef]
- Elizondo Saltos, A.; Flores-Ruiz, D.; Barroso González, M.d.l.O. Applying Social Networks in the Management of Sustainable Tourist Destinations: An Analysis of Spanish Tourist Destinations. Land 2021, 10, 1142. [Google Scholar] [CrossRef]
- Muller, E.; Peres, R. The effect of social networks structure on innovation performance: A review and directions for research. Int. J. Res. Mark. 2019, 36, 3–19. [Google Scholar] [CrossRef]
- Estrada, E. Characterization of topological keystone species: Local, global and “meso-scale” centralities in food webs. Ecol. Complex. 2007, 4, 48–57. [Google Scholar] [CrossRef]
- World Travel & Tourism Council. Economic Impact Report. 2020. Available online: https://wttc.org/Research/Economic-Impact (accessed on 5 September 2020).
- Brohman, J. New directions in tourism for third world development. Ann. Tour. Res. 1996, 23, 48–70. [Google Scholar] [CrossRef]
- Dwyer, L.; Forsyth, P. Assessing the benefits and costs of inbound tourism. Ann. Tour. Res. 1993, 20, 751–768. [Google Scholar] [CrossRef]
- Witt, S.F.; Brooke, M.Z.; Buckley, P.J. The Management of International Tourism (RLE Tourism); Routledge: London, UK, 2013. [Google Scholar]
- Yu, L.; Goulden, M. A comparative analysis of international tourists’ satisfaction in Mongolia. Tour. Manag. 2006, 27, 1331–1342. [Google Scholar] [CrossRef]
- Chen, C.-M.; Chen, S.H.; Lee, H.T. The destination competitiveness of Kinmen’s tourism industry: Exploring the interrelationships between tourist perceptions, service performance, customer satisfaction and sustainable tourism. J. Sustain. Tour. 2011, 19, 247–264. [Google Scholar] [CrossRef]
- Crouch, G.I.; Ritchie, J.B. Tourism, competitiveness, and societal prosperity. J. Bus. Res. 1999, 44, 137–152. [Google Scholar] [CrossRef]
- Crouch, G.I.; Ritchie, J.B. Application of the analytic hierarchy process to tourism choice and decision making: A review and illustration applied to destination competitiveness. Tour. Anal. 2005, 10, 17–25. [Google Scholar] [CrossRef]
- Sheldon, P.J. Forecasting tourism: Expenditures versus arrivals. J. Travel. Res. 1993, 32, 13–20. [Google Scholar] [CrossRef]
- Tsionas, E.G.; George Assaf, A. Short-run and long-run performance of international tourism: Evidence from Bayesian dynamic models. Tour. Manag. 2014, 42, 22–36. [Google Scholar] [CrossRef]
- Hunter, C.; Shaw, J. The ecological footprint as a key indicator of sustainable tourism. Tour. Manag. 2007, 28, 46–57. [Google Scholar] [CrossRef]
- Assaf, A.G.; Josiassen, A. Identifying and ranking the determinants of tourism performance: A global investigation. J. Travel. Res. 2012, 51, 388–399. [Google Scholar] [CrossRef]
- Matthews, H.G. International Tourism: A Political and Social Analysis; Schenkman Books: Rochester, VT, USA, 1978. [Google Scholar]
- Seok, H.; Barnett, G.A.; Nam, Y. A social network analysis of international tourism flow. Qual. Quant. 2020, 55, 1–21. [Google Scholar] [CrossRef]
- Santeramo, F.G.; Morelli, M. Modelling tourism flows through gravity models: A quantile regression approach. Curr. Issues Tour. 2016, 19, 1077–1083. [Google Scholar] [CrossRef]
- Eilat, Y.; Einav, L. Determinants of international tourism: A three-dimensional panel data analysis. Appl. Econ. 2004, 36, 1315–1327. [Google Scholar] [CrossRef]
- Crouch, G.I.; Schultz, L.; Valerio, P. Marketing international tourism to Australia: A regression analysis. Tour. Manag. 1992, 13, 196–208. [Google Scholar] [CrossRef]
- Yang, Y.; Wong, K.K. The influence of cultural distance on China inbound tourism flows: A panel data gravity model approach. Asian Geogr. 2012, 29, 21–37. [Google Scholar] [CrossRef]
- Peng, B.; Song, H.; Crouch, G.I. A meta-analysis of international tourism demand forecasting and implications for practice. Tour. Manag. 2014, 45, 181–193. [Google Scholar] [CrossRef]
- Garin-Munoz, T.; Amaral, T.P. An econometric model for international tourism flows to Spain. Appl. Econ. Lett. 2000, 7, 525–529. [Google Scholar] [CrossRef]
- Coshall, J. Spectral analysis of international tourism flows. Ann. Tour. Res. 2000, 27, 577–589. [Google Scholar] [CrossRef]
- Miguéns, J.; Mendes, J. Travel and tourism: Into a complex network. Phys. A 2008, 387, 2963–2971. [Google Scholar] [CrossRef] [Green Version]
- Lozano, S.; Gutiérrez, E. A complex network analysis of global tourism flows. Int. J. Tour. Res. 2018, 20, 588–604. [Google Scholar] [CrossRef]
- Sarkar, D.; Andris, C.; Chapman, C.A.; Sengupta, R. Metrics for characterizing network structure and node importance in Spatial Social Networks. ISPRS Int. J. Geo-Inf. 2019, 33, 1017–1039. [Google Scholar] [CrossRef]
- Zehrer, A.; Raich, F. Applying a lifecycle perspective to explain tourism network development. In Advances in Service Network Analysis; Routledge: London, UK, 2013; pp. 109–132. [Google Scholar]
- Zhu, H. Multi-level Understanding Dynamic Changes in Inbound Tourist Flow Network (ITFN) Structure: Topology, Collaboration, and Competitiveness. Curr. Issues Tour. 2021, 24, 2059–2077. [Google Scholar] [CrossRef]
- Hajian, B.; White, T. Modelling influence in a social network: Metrics and evaluation. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third In-ternational Conference on Social Computing, Boston, MA, USA, 9–11 October 2011. [Google Scholar]
- Lewer, J.J.; Van den Berg, H. A gravity model of immigration. Econ. Lett. 2008, 99, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.; Smith, T.E. Gravity Models of Spatial Interaction Behavior; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Morley, C.; Rosselló, J.; Santana-Gallego, M. Gravity models for tourism demand: Theory and use. Ann. Tour. Res. 2014, 48, 1–10. [Google Scholar] [CrossRef]
- Westveld, A.H.; Hoff, P.D. A Mixed Effects Model for Longitudinal Relational and Network Data, with Applications to International Trade and Conflict. Ann. Appl. Stat. 2011, 5, 843–872. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, E.R.; Helms, B.P. Detecting multicollinearity. Am. Stat. 1982, 36, 158–160. [Google Scholar]
- Abbasi, A.; Altmann, J.; Hossain, L. Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. J. Inform. 2011, 5, 594–607. [Google Scholar] [CrossRef]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [Google Scholar] [CrossRef] [Green Version]
- Rulke, D.L.; Galaskiewicz, J. Distribution of knowledge, group network structure, and group performance. Manag. Sci. 2000, 46, 612–625. [Google Scholar] [CrossRef]
Metric | Abbreviation | Means | Formula |
---|---|---|---|
Network Structure on Global Level f(G) | |||
Density | DE | The density of edges between nodes in a network. | |
Clustering Coefficient | CLC | The degree of clustering between vertices. | |
The Average Path Length | APL | The average shortest distance between all pairs of nodes. | |
Small-Worldness | SW | The degree of small-world nature. | |
Network Structure on Individual Level | |||
Degree Centrality | DC | The number of other nodes in the network directly tie with a referred one. | |
Closeness Centrality | CC | The degree of a node is close to all others. | |
Betweenness Centrality | BC | The frequency of a node which is just in the path of other pairs in the network. | |
Eigenvector Centrality | EC | Based on connections to high-scoring nodes contribute more to the score of the node to measure a node’s influence. | |
The Local Clustering Coefficient | LCLC | The extent of the neighbors of a referred point, which are also interconnected. | |
International Tourism Performance | |||
The Amount of Average International Tourism Arrivals | AITA | The average number of international tourism arrivals of all countries in the GNT | The amount of all international tourism arrivals in the world divided by the number of countries |
The Number of International Tourism Arrivals From a Country | ITA | The international tourism arrivals from j country to i country | Directly gain from statistics |
Metric | Value Range | Std. Error | Top 3 Countries | Last 3 Countries |
---|---|---|---|---|
DC | [1.728 × 10−5, 0.877] | 0.133 | China Mainland, United States, Germany | Tuvalu, Equatorial Guinea, Nauru |
CC | [0.467, 0.946] | 0.086 | United States, Canada, Germany | Sint Maarten, Aruba, Palau |
BC | [0, 0.067] | 0.008 | United States, Canada, Italy | Equatorial Guinea, Nauru, Guinea-Bissau |
EC | [0, 0.971] | 0.294 | Belgium, United States, Hong Kong (China) | Equatorial Guinea, Nauru, Guinea-Bissau |
LCLC | [0, 0.975] | 0.182 | South Sudan, Eritrea, Burundi | United States, Belgium, Canada |
DE | CLC | APL | SW | AITA | |
---|---|---|---|---|---|
DE | 1 | ||||
CLC | 0.928 ** | 1 | |||
APL | −0.975 ** | −0.951 ** | 1 | ||
SW | −0.977 ** | −0.919 ** | 0.972 ** | 1 | |
AITA | 0.963 ** | 0.918 ** | −0.951 ** | −0.909 ** | 1 |
Linear Model | Exponential Model | Logarithmic Model | Power Model | |||||
---|---|---|---|---|---|---|---|---|
Model | ||||||||
DE | 1 × 106 | 2 × 107 | 1 × 106 | 5.288 | 1 × 107 | 5 × 106 | 2 × 107 | 1.277 |
R2 | 0.9267 | 0.9623 | 0.8926 | 0.9495 | ||||
CLC | −3 × 107 | 6 × 107 | 503 | 13.952 | 2 × 107 | 4 × 107 | 2 × 108 | 8.899 |
R2 | 0.8428 | 0.8662 | 0.8338 | 0.8615 | ||||
APL | 3 × 107 | −2 × 107 | 4E+9 | −4.077 | 2 × 107 | −3 × 107 | 2 × 108 | −7.703 |
R2 | 0.9051 | 0.9483 | 0.9181 | 0.9562 | ||||
SW | 9 × 106 | −2 × 106 | 1 × 107 | −0.601 | 8 × 106 | −5 × 106 | 1 × 107 | −1.329 |
R2 | 0.8265 | 0.9071 | 0.8708 | 0.9348 |
Variables | Coefficient | Std. Err. | t | 95% Confidence | VIF | Revised VIF | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Constant | 42.8090 | 0.0838 | 511.08 *** | 42.6448 | 42.9732 | - | - |
ln dis | −1.7354 | 0.0049 | −356.15 *** | −1.7449 | −1.7258 | 1.154 | 1.154 |
ln DCi | 0.7068 | 0.0148 | 47.83 *** | 0.6778 | 0.7357 | 8.784 | 6.836 |
ln DCj | - | - | - | - | - | 11.331 | - |
ln CCi | 8.9563 | 0.0380 | 235.52 *** | 8.8818 | 9.0308 | 2.468 | 2.311 |
ln CCj | 9.3708 | 0.0394 | 238.02 *** | 9.2936 | 9.4479 | 3.068 | 2.165 |
ln BCi | - | - | - | - | - | 12.853 | - |
ln BCj | 0.1994 | 0.0040 | 49.82 *** | 0.1916 | 0.2072 | 6.431 | 6.145 |
ln ECi | −0.0017 | 0.0016 | −1.08 *** | −0.0048 | 0.0014 | 7.782 | 2.181 |
ln ECj | −1.0637 | 0.0124 | −85.46 *** | −1.0880 | −1.0393 | 5.942 | 3.204 |
ln LCLCi | −1.4942 | 0.0262 | −57.05 *** | −1.5455 | −1.4428 | 4.600 | 3.401 |
ln LCLCj | −1.6121 | 0.0282 | −57.08 *** | −1.6674 | −1.5567 | 4.557 | 4.049 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Liu, J. Network Structure Influence on Tourism Industrial Performance: A Network Perspective to Explain the Global Tourism Development. Appl. Sci. 2022, 12, 6226. https://doi.org/10.3390/app12126226
Zhu H, Liu J. Network Structure Influence on Tourism Industrial Performance: A Network Perspective to Explain the Global Tourism Development. Applied Sciences. 2022; 12(12):6226. https://doi.org/10.3390/app12126226
Chicago/Turabian StyleZhu, He, and Jiaming Liu. 2022. "Network Structure Influence on Tourism Industrial Performance: A Network Perspective to Explain the Global Tourism Development" Applied Sciences 12, no. 12: 6226. https://doi.org/10.3390/app12126226
APA StyleZhu, H., & Liu, J. (2022). Network Structure Influence on Tourism Industrial Performance: A Network Perspective to Explain the Global Tourism Development. Applied Sciences, 12(12), 6226. https://doi.org/10.3390/app12126226