Torsional Fracture Resistance of Niti Rotary Glide Path Files under Flexural Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrument Design
2.2. Phase Transformation Behavior
2.3. Torsional Fracture Resistance
2.4. Statistical Analysis
3. Results
3.1. Instrument Design
3.2. Phase Transformation Behavior
3.3. Torsional Fracture Resistance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Celik, D.; Taşdemir, T.; Er, K. Comparative study of 6 rotary nickel-titanium systems and hand instrumentation for root canal preparation in severely curved root canals of extracted teeth. J. Endod. 2013, 39, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, O.S. “Glide path” in endodontics. Turk. Endod. J. 2021, 6, 24–30. [Google Scholar] [CrossRef]
- Paleker, F.; van der Vyver, P.J. Comparison of canal transportation and centering ability of k-files, ProGlider file, and G-files: A micro-computed tomography study of curved root canals. J. Endod. 2016, 42, 1105–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Tahun, I.H.; Kwak, S.W.; Ha, J.H.; Sigurdsson, A.; Kayahan, M.B.; Kim, H.C. Effective establishment of glide-path to reduce torsional stress during nickel-titanium rotary instrumentation. Materials 2019, 12, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berutti, E.; Paolino, D.S.; Chiandussi, G.; Alovisi, M.; Cantatore, G.; Castellucci, A.; Pasqualini, D. Root canal anatomy preservation of WaveOne reciprocating files with or without glide path. J. Endod. 2012, 38, 101–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, M.L.N.P.; Sánchez, J.A.G.; Olivieri, J.G.; Elmsmari, F.; Salmon, P.; Jaramillo, D.E.; Terol, F.D.-S. Micro-computed tomographic assessment and comparative study of the shaping ability of 6 nickel-titanium files: An in vitro study. J. Endod. 2021, 47, 812–819. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, B.; Zheng, Y.F. An overview of the mechanical properties of nickel-titanium endodontic instruments. Endod. Top. 2013, 29, 42–54. Available online: http://onlinelibrary.wiley.com/doi/epdf/10.1111/etp.12045 (accessed on 1 January 2022). [CrossRef]
- Zupanc, J.; Vahdat-Pajouh, N.; Schäfer, E. New thermomechanically treated NiTi alloys—A review. Int. Endod. J. 2018, 51, 1088–1103. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Qian, W.; Abtin, H.; Gao, Y.; Haapasalo, M. Fatigue testing of controlled memory wire nickel-titanium rotary instruments. J. Endod. 2011, 37, 997–1001. [Google Scholar] [CrossRef]
- Chang, S.W.; Shim, K.S.; Kim, Y.C.; Jee, K.K.; Zhu, Q.; Perinpanayagam, H.; Kum, K.K. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of V taper 2 and V taper 2H rotary NiTi files. Scanning 2016, 38, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Goo, H.J.; Kwak, S.W.; Ha, J.H.; Pedullà, E.; Kim, H.C. Mechanical properties of various heat-treated nickel-titanium rotary instruments. J. Endod. 2017, 43, 1872–1877. [Google Scholar] [CrossRef] [PubMed]
- RaCe Evo Switzerland: FKG Dentaire, SA. 2020. Available online: https://www.fkg.ch/sites/default/files/FKG_RACE%20EVO_Brochure_EN_WEB_202006.pdf (accessed on 1 January 2022).
- McGuigan, M.B.; Louca, C.; Duncan, H.F. Endodontic instrument fracture: Causes and prevention. Br. Dent. J. 2013, 214, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Sivas Yilmaz, Ö.; Keskin, C.; Aydemir, H. Comparison of the torsional resistance of 4 different glide path instruments. J. Endod. 2021, 47, 970–975. [Google Scholar] [CrossRef] [PubMed]
- İnan, U.; Keskin, C. Torsional resistance of ProGlider, Hyflex EDM, and One G glide path instruments. J. Endod. 2019, 45, 1253–1257. [Google Scholar] [CrossRef]
- He, R.; Ni, J. Design improvement and failure reduction of endodontic files through finite element analysis: Application to V-Taper file designs. J. Endod. 2010, 36, 1552–1557. [Google Scholar] [CrossRef]
- Elnaghy, A.M.; Elsaka, S.E.; Elshazli, A.H. Dynamic cyclic and torsional fatigue resistance of TruNatomy compared with different nickel-titanium rotary instruments. Aust. Endod. J. 2020, 46, 226–233. [Google Scholar] [CrossRef]
- Oh, S.; Kum, K.Y.; Cho, K.; Lee, S.H.; You, S.H.; Go, J.; Jeon, B.K.; Kim, S.W.; Kim, T.H.; Jang, J.H.; et al. Torsional and bending properties of V Taper 2H, ProTaper NEXT, NRT, and One Shape. BioMed Res. Int. 2019, 2019, 6368958. [Google Scholar] [CrossRef]
- Al Raeesi, D.; Kwak, S.W.; Ha, J.H.; Sulaiman, S.; El Abed, R.; Kim, H.C. Mechanical properties of glide path preparation instruments with different pitch lengths. J. Endod. 2018, 44, 864–868. [Google Scholar] [CrossRef]
- Baek, S.H.; Lee, C.J.; Versluis, A.; Kim, B.M.; Lee, W.; Kim, H.C. Comparison of torsional stiffness of nickel-titanium rotary files with different geometric characteristics. J. Endod. 2011, 37, 1283–1286. [Google Scholar] [CrossRef]
- Silva, E.; Giraldes, J.F.N.; de Lima, C.O.; Vieira, V.T.L.; Elias, C.N.; Antunes, H.S. Influence of heat treatment on torsional resistance and surface roughness of nickel-titanium instruments. Int. Endod. J. 2019, 52, 1645–1651. [Google Scholar] [CrossRef]
- Nishijo, M.; Ebihara, A.; Tokita, D.; Doi, H.; Hanawa, T.; Okiji, T. Evaluation of selected mechanical properties of NiTi rotary glide path files manufactured from controlled memory wires. Dent. Mater. J. 2018, 37, 549–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vasconcelos, R.A.; Murphy, S.; Carvalho, C.A.; Govindjee, R.G.; Govindjee, S.; Peters, O.A. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J. Endod. 2016, 42, 782–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, A.; Macorra, J.C.; Govindjee, S.; Peters, O.A. Correlation between temperature-dependent fatigue resistance and differential scanning calorimetry analysis for 2 contemporary rotary instruments. J. Endod. 2018, 44, 630–634. [Google Scholar] [CrossRef] [PubMed]
Heating Curve | Cooling Curve | |||||
---|---|---|---|---|---|---|
As | Af | Rs | Rf | Ms | Mf | |
PathFile | −16.63 | 0 | ||||
Race | 3.85 | 27.88 | 21.92 | −4.04 | ||
Race Evo | 12.04 | 45.37 | 37.50 | 15.74 | −27.5 | −65.87 |
HyFlex EDM | 26.54 | 50.1 | 42.31 | 17.31 | ||
TruNatomy Glider | 10.58 | 37.02 | 30.96 | 8.65 | −34.23 | −64.04 |
V Taper 2H | 15.77 | 44.33 | 40.19 | 12.21 | −20.38 | −45.87 |
PathFile | RaCe | RaCe Evo | HyFlex EDM | TruNatomy Glider | V Taper 2H | |
---|---|---|---|---|---|---|
Straight | 0.213 (0.030) a | 0.225 (0.039) a | 0.250 (0.060) a,b | 0.293 (0.051) b | 0.285 (0.063) b | 0.404 (0.079) c |
Flexural | 0.227 (0.024) a | 0.233 (0.056) a | 0.348 (0.055) b,c,* | 0.348 (0.019) b,c,* | 0.307 (0.061) b | 0.397 (0.081) c |
pvalue | 0.188 | 0.706 | <0.001 | <0.001 | 0.355 | 0.827 |
PathFile | RaCe | RaCe Evo | HyFlex EDM | TruNatomy Glider | V Taper 2H | |
---|---|---|---|---|---|---|
Straight | 748.22 (82.68) b | 574.42 (85.29) a | 743.92 (122.61) b | 627.17 (47.32) a | 687.25 (45.08) b | 2036.76 (517.97) c |
Flexural | 772.37 (68.98) b | 572.84 (99.6) a | 1003.34 (117.76) c,* | 755.04 (83.67) b,* | 938.55 (103.75) c,* | 2969.86 (831.34) d,* |
pvalue | 0.263 | 0.971 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Park, J.-H.; Kim, H.-J.; Kim, H.-J.; Shim, E.; Woo, J.-Y.; Perinpanayagam, H.; Choi, K.-K.; Chang, S.W. Torsional Fracture Resistance of Niti Rotary Glide Path Files under Flexural Stress. Appl. Sci. 2022, 12, 6214. https://doi.org/10.3390/app12126214
Oh S, Park J-H, Kim H-J, Kim H-J, Shim E, Woo J-Y, Perinpanayagam H, Choi K-K, Chang SW. Torsional Fracture Resistance of Niti Rotary Glide Path Files under Flexural Stress. Applied Sciences. 2022; 12(12):6214. https://doi.org/10.3390/app12126214
Chicago/Turabian StyleOh, Soram, Ju-Hyo Park, Hyun-Jung Kim, Hye-Jeong Kim, Eurok Shim, Jee-Yeon Woo, Hiran Perinpanayagam, Kyung-Kyu Choi, and Seok Woo Chang. 2022. "Torsional Fracture Resistance of Niti Rotary Glide Path Files under Flexural Stress" Applied Sciences 12, no. 12: 6214. https://doi.org/10.3390/app12126214
APA StyleOh, S., Park, J.-H., Kim, H.-J., Kim, H.-J., Shim, E., Woo, J.-Y., Perinpanayagam, H., Choi, K.-K., & Chang, S. W. (2022). Torsional Fracture Resistance of Niti Rotary Glide Path Files under Flexural Stress. Applied Sciences, 12(12), 6214. https://doi.org/10.3390/app12126214