Automatic Transmission Fluids in Electrified Transmissions: Compatibility with Elastomers
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Aging Process of the Different Materials
2.3. Materials Characterization
2.4. Complementary Tests
3. Results and Discussion
3.1. Changes in Volume
3.2. Changes in Hardness
3.3. Changes in Tensile Strength and Elongation at Break
3.4. Results of Complementary Tests
4. Conclusions
- The four ATFs caused similar effects on each material, except for oil C and oil A, which reduced the tensile strength of the silicone and increased the volume of the EPDM, respectively, making them incompatible.
- A significant reduction in the crystalline structure of the silicone was indicated by the XRD tests, this reduction being higher after aging in oil C, which led to this combination not fulfilling the specifications regarding tensile strength. The crystalline structure variation in FKM was not important, and it was not possible to make the calculations for the EPDM due to its semi-crystalline nature.
- The FT-IR tests helped to confirm the presence of the oils inside the structure of the aged silicone samples, which would have contributed to the swelling and softening of the material.
- Due to oil absorption in the polymeric matrix, chemical and structural changes were detected in the EPDM and silicone, causing a volume increase which led to reductions in hardness and tensile strength. The FKM did not absorb any oil during the aging process, but the evaporation of the volatile components present in the fresh rubber caused a decrease in the volume and an increase in hardness.
- The non-compatibility of the EPDM with the oils from Group III was also proven.
- The compatibility of these ATFs with some of the elastomers tested is an essential requirement but is not sufficient without further trials involving other properties. More compatibility tests (magnetic, electrical, corrosion, thermal, foaming at high speeds, and aeration) should be conducted on the ATFs before using them in an electrified transmission.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2014 Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107654815. [Google Scholar]
- Holmberg, K.; Erdemir, A. The Impact of Tribology on Energy Use and CO2 Emission Globally and in Combustion Engine and Electric Cars. Tribol. Int. 2019, 135, 389–396. [Google Scholar] [CrossRef]
- Woydt, M. The Importance of Tribology for Reducing CO2 Emissions and for Sustainability. Wear 2021, 474–475, 203768. [Google Scholar] [CrossRef]
- Bellekom, S.; Benders, R.; Pelgröm, S.; Moll, H. Electric Cars and Wind Energy: Two Problems, One Solution? A Study to Combine Wind Energy and Electric Cars in 2020 in The Netherlands. Energy 2012, 45, 859–866. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, X.; Teng, T.; Zhang, J.; Feng, Z.; Lv, Q. A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles. Energies 2020, 13, 5355. [Google Scholar] [CrossRef]
- Farfan-Cabrera, L.I. Tribology of Electric Vehicles: A Review of Critical Components, Current State and Future Improvement Trends. Tribol. Int. 2019, 138, 473–486. [Google Scholar] [CrossRef]
- García, A.; Valbuena, G.D.; García-Tuero, A.; Fernández-González, A.; Viesca, J.L.; Battez, A.H. Compatibility of Automatic Transmission Fluids with Structural Polymers Used in Electrified Transmissions. Appl. Sci. 2022, 12, 3608. [Google Scholar] [CrossRef]
- Rodríguez, E.; Rivera, N.; Fernández-González, A.; Pérez, T.; González, R.; Battez, A.H. Electrical Compatibility of Transmission Fluids in Electric Vehicles. Tribol. Int. 2022, 171, 107544. [Google Scholar] [CrossRef]
- Technical Team of Afton Chemical Company. Afton Specification Handbook; Afton Chemical: Richmond, VA, USA, 2019. [Google Scholar]
- Braun, J. Current Elastomer Compatibility Test Standards—A Critical View. Seal. Technol. 2011, 2011, 8–12. [Google Scholar] [CrossRef]
- Du, B.X.; Kong, X.X.; Li, J.; Xiao, M. High Thermal Conductivity Insulation and Sheathing Materials for Electric Vehicle Cable Application. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1363–1370. [Google Scholar] [CrossRef]
- Bulut, D.; Krups, T.; Poll, G.; Giese, U. Lubricant Compatibility of FKM Seals in Synthetic Oils. Ind. Lubr. Tribol. 2020, 72, 557–565. [Google Scholar] [CrossRef]
- Zeng, N. Compatibility Study of Fluorinated Elastomers in Automatic Transmission Fluids. In Proceedings of the 2008 SAE International Powertrains, Fuels and Lubricants Congress, Hong Kong, China, 24 June 2008; SAE International: Warrendale, PA, USA, 2008. [Google Scholar]
- ASTM D7216-15; Standard Test Method for Determining Automotive Engine Oil Compatibility with Typical Seal Elastomers. ASTM International: West Conshohocken, PA, USA, 2015.
- Haghshenas, N.; Nejat, A.; Seyedmehdi, S.A.; Ou, J.; Amirfazli, A.; Chini, S.F. Adhesion Aspects of Silicone Rubber Coatings for High Voltage Insulators: A Critical Review. Rev. Adhes. Adhes. 2021, 9, 434. [Google Scholar] [CrossRef]
- Flitney, R. Seals and Sealing Handbook: Sixth Edition; Elsevier Inc.: Amsterdam, The Netherlands, 2014; ISBN 9780080994161. [Google Scholar]
- Drobny, J.G. Compounds for Automotive Power Train Systems. In Fluoroelastomers Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 483–490. [Google Scholar]
- Kusuhara, S.; Yoshimura, K.; Kunieda, K.; Suzuki, N.; Matsuki, S.; Shitara, Y. Experimental Investigation on the Influence of Engine Oil Additives on Silicone Rubber. SAE Int. J. Fuels Lubr. 2017, 10, 461–468. [Google Scholar] [CrossRef]
- Nakamura, T.; Chaikumpollert, O.; Yamamoto, Y.; Ohtake, Y.; Kawahara, S. Degradation of EPDM Seal Used for Water Supplying System. Polym. Degrad. Stab. 2011, 96, 1236–1241. [Google Scholar] [CrossRef]
- de Souza, E.L.; de Souza Zanzi, M.; de Paiva, K.V.; Goes Oliveira, J.L.; Monteiro, A.S.; de Oliveira Barra, G.M.; Dutra, G.B. Evaluation of the Aging of Elastomeric Acrylonitrile-Butadiene Rubber and Ethylene-Propylene-Diene Monomer Gaskets Used to Seal Plates Heat Exchanger. Polym. Eng. Sci. 2021, 61, 3001–3016. [Google Scholar] [CrossRef]
- Farfán-Cabrera, L.I.; Gallardo-Hernández, E.A.; Reséndiz-Calderón, C.D.; Sedano de la Rosa, C. Physical and Tribological Properties Degradation of Silicone Rubber Using Jatropha Biolubricant. Tribol. Trans. 2018, 61, 640–647. [Google Scholar] [CrossRef]
- Petit, J.; Fewkes, R.; O’Brien, C. Seal Testing in Aerated Lubricants. In Proceedings of the SAE 2011 World Congress and Exhibition, Detroit, MI, USA, 12 April 2011. [Google Scholar]
- Tate, N.; Saito, M.; Sugitani, K. Fluoroelastomer Resistant to Automotive Lubricants. In SAE Technical Papers; SAE International: Warrendale, PA, USA, 2003. [Google Scholar]
- Vaiden, R.E. Elastomeric Materials for Engine and Transmission Gaskets. In SAE Technical Papers; SAE International: Warrendale, PA, USA, 1992. [Google Scholar] [CrossRef]
- Hull, D.E.; Eggers, R.E.; Horemans, E. New Elastomers Are More Resistant to Many Automotive Fluids; SAE Technical Paper 890361; SAE: Detroit, MI, USA, 1989. [Google Scholar]
- Zeng, N.; Dickerman, R.L. Development of Additional SAE J2643 Standard Reference Elastomers. SAE Int. J. Mater. Manuf. 2011, 4, 40–74. [Google Scholar] [CrossRef]
- Dobel, T.M.; Bauerle, J.G. New FKM Developments for Automotive Powertrain Applications. In SAE Technical Papers; SAE International: Warrendale, PA, USA, 2000; pp. 263–269. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore Suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies. In Tables and Charts; John Wiley & Sons: Hoboken, NJ, USA, 2001; ISBN 978-0-470-09307-8. [Google Scholar]
- Shivakumar, E.; Das, C.K.; Pandey, K.N.; Alam, S.; Mathur, G.N. Blends of Silicone Rubber and Liquid Crystalline Polymer. Macromol. Res. 2005, 13, 81–87. [Google Scholar] [CrossRef]
- Sugama, T.; Pyatina, T.; Redline, E.; McElhanon, J.; Blankenship, D. Degradation of Different Elastomeric Polymers in Simulated Geothermal Environments at 300 °C. Polym. Degrad. Stab. 2015, 120, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Kader, M.A.; Lyu, M.Y.; Nah, C. A Study on Melt Processing and Thermal Properties of Fluoroelastomer Nanocomposites. Compos. Sci. Technol. 2006, 66, 1431–1443. [Google Scholar] [CrossRef]
- Singh, A.; Soni, P.K.; Sarkar, C.; Mukherjee, N. Thermal Reactivity of Aluminized Polymer-Bonded Explosives Based on Non-Isothermal Thermogravimetry and Calorimetry Measurements. J. Therm. Anal. Calorim. 2019, 136, 1021–1035. [Google Scholar] [CrossRef]
- Rojas Rodríguez, F.I.; D’almeida, J.R.M.; Marinkovic, B.A. Natural Aging of Ethylene-Propylene-Diene Rubber under Actual Operation Conditions of Electrical Submersible Pump Cables. Materials 2021, 14, 5520. [Google Scholar] [CrossRef] [PubMed]
- Bouguedad, D.; Mekhaldi, A.; Jbara, O.; Rondot, S.; Hadjadj, A.; Douglade, J.; Dony, P. Physico-Chemical Study of Thermally Aged EPDM Used in Power Cables Insulation. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3207–3215. [Google Scholar] [CrossRef]
- Kang, H.; Chen, L.; Du, H.; Wang, H.; Li, D.; Fang, Q. Hot Nitric Acid Diffusion in Fluoroelastomer Composite and Its Degradation. RSC Adv. 2019, 9, 38105–38113. [Google Scholar] [CrossRef]
- Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Almdal, K.; Rehmeier, H.K.; Christensen, A.G. Chemical Degradation of Fluoroelastomer in an Alkaline Environment. Polym. Degrad. Stab. 2004, 83, 195–206. [Google Scholar] [CrossRef]
ATF | Base Oils (wt.%) | Density (kg/m3) | Kin. Viscosity (cSt) 1 | VI 2 | |
---|---|---|---|---|---|
15 °C | 100 °C | 40 °C | |||
Oil A | Group I, 4.9 cSt/100 °C (77.7) Group I, 2.7 cSt/100 °C (10.6) | 869 | 7.8 | 43 | 161 |
Oil B | Group III, 3.0 cSt/100 °C (38.3) Group III, 6.5 cSt/100 °C (50.7) | 847 | 6 | 30 | 151 |
Oil C | Group III, 3.0 cSt/100 °C (45.0) Group III, 6.5 cSt/100 °C (38.5) | 854 | 7.2 | 35 | 181 |
Oil D | Group III, 3.0 cSt/100 °C (36.5) Group III, 4.2 cSt/100 °C (36.5) | 854 | 6.9 | 34 | 165 |
FKM 1 | EPDM 2 | Silicone 3 | |
---|---|---|---|
Density (kg/m3) | - | 1130 | 1300 |
Tensile Strength (MPa) | 9.8 | 12 | 5 |
Elongation at break (%) | 165 | 360 | 450 |
Hardness (Shore A) | 70 | 70 | 60 |
Max. op. temperature (°C) | 204 | 100 | 200 |
Aging Time (h) | FKM | EPDM | Silicone |
---|---|---|---|
168 | 0.020 | 0.025 | 0.025 |
336 | 0.015 | 0.025 | 0.030 |
504 | 0.015 | 0.025 | 0.030 |
672 | 0.015 | 0.025 | 0.030 |
ATF | Aging (h) | FKM | EPDM | Silicone |
---|---|---|---|---|
Fresh | 0 | 10.57 (1.62) | 9.57 (0.31) | 10.03 (0.47) |
Oil A | 168 | 10.40 (0.26) | 3.00 (0.20) | 7.23 (1.34) |
336 | 8.73 (0.40) | 2.87 (0.15) | 7.67 (0.29) | |
504 | 9.33 (0.96) | 2.37 (0.21) | 6.63 (0.55) | |
672 | 9.55 (0.07) | 2.57 (0.21) | 6.97 (0.50) | |
Oil B | 168 | 9.43 (0.49) | 9.57 (0.31) | 7.53 (0.57) |
336 | 6.83 (0.21) | 3.43 (0.32) | 6.83 (0.45) | |
504 | 7.13 (0.12) | 2.73 (0.31) | 7.43 (0.12) | |
672 | 7.47 (0.25) | 3.33 (0.25) | 7.30 (0.20) | |
Oil C | 168 | 10.37 (0.38) | 2.97 (0.38) | 4.07 (0.23) |
336 | 7.93 (0.21) | 9.57 (0.31) | 2.83 (0.12) | |
504 | 8.27 (0.85) | 4.23 (0.76) | 2.47 (0.15) | |
672 | 8.20 (0.36) | 3.03 (0.21) | 2.10 (0.10) | |
Oil D | 168 | 9.87 (0.38) | 2.77 (0.21) | 10.03 (0.47) |
336 | 7.13 (0.32) | 2.83 (0.25) | 6.67 (0.58) | |
504 | 7.80 (0.36) | 9.57 (0.31) | 6.00 (0.46) | |
672 | 7.80 (0.17) | 3.17 (0.29) | 5.87 (0.49) |
ATF | 0 h | 168 h | 672 h |
---|---|---|---|
- | 21.29 | - | - |
Oil A | - | 13.47 | 13.50 |
Oil B | - | 13.55 | 19.22 |
Oil C | 20.33 | 18.64 | |
Oil D | - | 13.96 | 12.45 |
ATF | 0 h | 168 h | 672 h |
---|---|---|---|
- | 65.50 | - | - |
Oil A | - | 26.20 | 34.76 |
Oil B | - | 23.47 | 34.51 |
Oil C | 18.73 | 17.35 | |
Oil D | - | 16.60 | 18.24 |
ATF | Tonset [°C] | Tendset [°C] | WLTotal [%] | Tpeak [°C] |
---|---|---|---|---|
Fresh | 468 | 499 | 69.0 | 486 |
Oil A | 468 | 503 | 66.9 | 489 |
Oil B | 465 | 503 | 64.2 | 488 |
Oil C | 468 | 504 | 65.7 | 489 |
Oil D | 468 | 504 | 64.9 | 489 |
ATF | Step 1 | Step 2 | Step 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tonset [°C] | Tendset [°C] | WL [%] | Tpeak [°C] | Tonset [°C] | Tendset [°C] | WL [%] | Tpeak [°C] | Tonset [°C] | Tendset [°C] | WL [%] | Tpeak [°C] | |
Fresh | 236 | 360 | 31.5 | 303 | 459 | 489 | 25.5 | 478 | 635 | 722 | 2.4 | 707 |
Oil A | 245 | 363 | 57.7 | 325 | 458 | 490 | 16.2 | 477 | 643 | 723 | 1.5 | 705 |
Oil B | 248 | 378 | 58.5 | 330 | 458 | 489 | 16.5 | 477 | 674 | 725 | 1.4 | 716 |
Oil C | 240 | 363 | 53.1 | 362 | 460 | 489 | 18.0 | 475 | 662 | 726 | 1.6 | 710 |
Oil D | 234 | 337 | 54.7 | 297 | 456 | 489 | 17.6 | 476 | 660 | 721 | 1.6 | 704 |
ATF | Step 1 | Step 2 | ||||||
---|---|---|---|---|---|---|---|---|
Tonset (°C) | Tendset (°C) | WL (%) | Tpeak (°C) | Tonset (°C) | Tendset (°C) | WL (%) | Tpeak (°C) | |
Fresh | - | - | - | - | 512 | 621 | 59.3 | 592 |
Oil A | 212 | 314 | 7.6 | 271 | 502 | 626 | 55.2 | 584 |
Oil B | 195 | 298 | 7.1 | 246 | 500 | 629 | 54.8 | 587 |
Oil C | 205 | 306 | 8.2 | 257 | 508 | 640 | 54.3 | 612 |
Oil D | 199 | 301 | 8.5 | 257 | 517 | 639 | 54.0 | 611 |
ATF | FKM | EPDM | Silicone |
---|---|---|---|
Oil A | ** | * | *** |
Oil B | ** | * | *** |
Oil C | ** | * | ** |
Oil D | ** | * | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Tuero, A.; Ramajo, B.; Valbuena, G.D.; Fernández-González, A.; Mendoza, R.; García, A.; Hernández Battez, A. Automatic Transmission Fluids in Electrified Transmissions: Compatibility with Elastomers. Appl. Sci. 2022, 12, 6213. https://doi.org/10.3390/app12126213
García-Tuero A, Ramajo B, Valbuena GD, Fernández-González A, Mendoza R, García A, Hernández Battez A. Automatic Transmission Fluids in Electrified Transmissions: Compatibility with Elastomers. Applied Sciences. 2022; 12(12):6213. https://doi.org/10.3390/app12126213
Chicago/Turabian StyleGarcía-Tuero, Alejandro, Beatriz Ramajo, Guillermo D. Valbuena, Alfonso Fernández-González, Rafael Mendoza, Alberto García, and Antolin Hernández Battez. 2022. "Automatic Transmission Fluids in Electrified Transmissions: Compatibility with Elastomers" Applied Sciences 12, no. 12: 6213. https://doi.org/10.3390/app12126213
APA StyleGarcía-Tuero, A., Ramajo, B., Valbuena, G. D., Fernández-González, A., Mendoza, R., García, A., & Hernández Battez, A. (2022). Automatic Transmission Fluids in Electrified Transmissions: Compatibility with Elastomers. Applied Sciences, 12(12), 6213. https://doi.org/10.3390/app12126213