Decision-Making Problems in Construction Projects Executed under the Principles of Sustainable Development—Bridge Construction Case
Abstract
:1. Introduction
2. Main Challenges
2.1. Technology
- Structures are permanently attached to the ground and have a large mass and size; they have a longer life cycle than other construction projects;
- The individual nature of technical solutions for buildings and non-building structures;
- The differentiated quality standards for this type of construction;
- Differentiated quality standards for construction;
- Need for individual technological and organizational solutions for the execution of construction;
- Complex nature of the execution processes;
- Long production cycles and high costs;
- A large number of specialised processes;
- A significant impact of construction on the natural environment;
- Many different stakeholders are involved in the process;
- The probabilistic nature of construction processes, implying the risk [31].
2.2. Project Management
2.2.1. Risk Management
2.2.2. Resource Management
3. Sustainability in Construction
- The consumption of non-renewable resources and the energy required for their processing, especially in the construction phase of buildings and non-building structures;
- Emissions level of harmful substances, especially in the operation phase of the facilities;
- Possibility of recycling in the dismantling phase of the facilities.
3.1. Construction and Demolition Waste (CDW)
3.2. Linear Economy vs. Circular Economy
3.3. Human Well-Being and Needs of Future Generations
4. Methods
4.1. Case Studies
4.2. Survey
5. Results
5.1. Case Study
5.2. Survey
- R1: “design and construction phase leads to the creation of a building/non-building structure, and both of these spheres (functional and subjective) must meet the principles of sustainable development”;
- R2: “building/non-building structure is created as a result of design and construction phase that meet the principles of sustainable development”;
- R3: “at the final stage, a building/non-building structure is created and meets the principles of sustainable construction”;
- R4: “I do not know”.
6. Discussion
7. Conclusions
7.1. Point of View of Stakeholders
7.2. Point of View of Policymakers
7.3. Final Remarks
7.4. Research Limitations and Future Research Lines
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Navaratnam, S.; Satheeskumar, A.; Zhang, G.; Nguyen, K.; Venkatesan, S.; Poologanathan, K. The Challenges Confronting the Growth of Sustainable Prefabricated Building Construction in Australia: Construction Industry Views. J. Build. Eng. 2022, 48, 103935. [Google Scholar] [CrossRef]
- Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Davila Delgado, J.M.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial Intelligence in the Construction Industry: A Review of Present Status, Opportunities and Future Challenges. J. Build. Eng. 2021, 44, 103299. [Google Scholar] [CrossRef]
- Alvanchi, A.; Rahimi, M.; Mousavi, M.; Alikhani, H. Construction Schedule, an Influential Factor on Air Pollution in Urban Infrastructure Projects. J. Clean. Prod. 2020, 255, 120222. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Ding, Y. Assessing the Influence of Urban Transportation Infrastructure Construction on Haze Pollution in China: A Case Study of Beijing-Tianjin-Hebei Region. Environ. Impact Assess. Rev. 2021, 87, 106547. [Google Scholar] [CrossRef]
- Dräger, P.; Letmathe, P. Value Losses and Environmental Impacts in the Construction Industry—Tradeoffs or Correlates? J. Clean. Prod. 2022, 336, 130435. [Google Scholar] [CrossRef]
- Su, Y.; Chen, J.; Si, H.; Wu, G.; Zhang, R.; Lei, W. Decision-Making Interaction among Stakeholders Regarding Construction and Demolition Waste Recycling under Different Power Structures. Waste Manag. 2021, 131, 491–502. [Google Scholar] [CrossRef]
- Du, L.; Feng, Y.; Lu, W.; Kong, L.; Yang, Z. Evolutionary Game Analysis of Stakeholders’ Decision-Making Behaviours in Construction and Demolition Waste Management. Environ. Impact Assess. Rev. 2020, 84, 106408. [Google Scholar] [CrossRef]
- Okudan, O.; Budayan, C.; Dikmen, I. A Knowledge-Based Risk Management Tool for Construction Projects Using Case-Based Reasoning. Expert Syst. Appl. 2021, 173, 114776. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.; Oh, J. Build-Transfer-Operate with Risk Sharing Approach for Railway Public-Private-Partnership Project in Korea. Asian Transp. Stud. 2022, 8, 100061. [Google Scholar] [CrossRef]
- Farooq, M.U.; Thaheem, M.J.; Arshad, H. Improving the Risk Quantification under Behavioural Tendencies: A Tale of Construction Projects. Int. J. Proj. Manag. 2018, 36, 414–428. [Google Scholar] [CrossRef]
- Alattyih, W.; Haider, H.; Boussabaine, H. Risk Factors Impacting the Project Value Created by Green Buildings in Saudi Arabia. Appl. Sci. 2020, 10, 7388. [Google Scholar] [CrossRef]
- Turk, Ž.; García de Soto, B.; Mantha, B.R.K.; Maciel, A.; Georgescu, A. A Systemic Framework for Addressing Cybersecurity in Construction. Autom. Constr. 2022, 133, 103988. [Google Scholar] [CrossRef]
- Mantha, B.; García de Soto, B.; Karri, R. Cyber Security Threat Modeling in the AEC Industry: An Example for the Commissioning of the Built Environment. Sustain. Cities Soc. 2021, 66, 102682. [Google Scholar] [CrossRef]
- Yevu, S.K.; Yu, A.T.W.; Darko, A. Digitalization of Construction Supply Chain and Procurement in the Built Environment: Emerging Technologies and Opportunities for Sustainable Processes. J. Clean. Prod. 2021, 322, 129093. [Google Scholar] [CrossRef]
- Rafsanjani, H.N.; Nabizadeh, A.H. Towards Digital Architecture, Engineering, and Construction (AEC) Industry through Virtual Design and Construction (VDC) and Digital Twin. Energy Built Environ. 2021, in press. [Google Scholar] [CrossRef]
- Lotfi, R.; Yadegari, Z.; Hosseini, S.H.; Khameneh, A.H.; Tirkolaee, E.B.; Weber, G.-W. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. J. Ind. Manag. Optim. 2022, 18, 375–396. [Google Scholar] [CrossRef]
- Marzouk, M.; Nouh, A.; El-Said, M. Developing Green Bridge Rating System Using Simos’ Procedure. HBRC J. 2014, 10, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Xiong, G.; Shi, D. Innovation and Sustainable: Can Innovative City Improve Energy Efficiency? Sustain. Cities Soc. 2022, 80, 103761. [Google Scholar] [CrossRef]
- Fontaine, A. Debating the Sustainability of Solar Energy: Examining Resource Construction Processes for Local Photovoltaic Projects in France. Energy Res. Soc. Sci. 2020, 69, 101725. [Google Scholar] [CrossRef]
- Khan, S.A.; Koç, M.; Al-Ghamdi, S.G. Sustainability Assessment, Potentials and Challenges of 3D Printed Concrete Structures: A Systematic Review for Built Environmental Applications. J. Clean. Prod. 2021, 303, 127027. [Google Scholar] [CrossRef]
- Ershadi, M.; Goodarzi, F. Core Capabilities for Achieving Sustainable Construction Project Management. Sustain. Prod. Consum. 2021, 28, 1396–1410. [Google Scholar] [CrossRef]
- ASCE. 2021 Report Card for America’s Infrastructure. Bridges; ASCE: Reston, VA, USA, 2021. [Google Scholar]
- The American Road & Transportation Builders Association (ARTBA). 2022 Bridge Report; ARTBA: Washington, DC, USA, 2022. [Google Scholar]
- General Directorate for National Roads and Motorways (Polish: Generalna Dyrekcja Dróg Krajowych i Autostrad). 2017 Report on Technical Condition of Nation’s Bridges in Poland; Generalna Dyrekcja Dróg Krajowych i Autostrad: Warsaw, Poland, 2017. [Google Scholar]
- Figueiredo, K.; Hammad, A.W.A.; Haddad, A.; Tam, V.W.Y. Assessing the Usability of Blockchain for Sustainability: Extending Key Themes to the Construction Industry. J. Clean. Prod. 2022, 343, 131047. [Google Scholar] [CrossRef]
- De Villiers, C.; Kuruppu, S.; Dissanayake, D. A (New) Role for Business—Promoting the United Nations’ Sustainable Development Goals through the Internet-of-Things and Blockchain Technology. J. Bus. Res. 2021, 131, 598–609. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Z.; Ding, T.; Xiao, J. Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete. J. Clean. Prod. 2021, 278, 123884. [Google Scholar] [CrossRef]
- Ilić, D.; Milošević, I.; Ilić-Kosanović, T. Application of Unmanned Aircraft Systems for Smart City Transformation: Case Study Belgrade. Technol. Forecast. Soc. Change 2022, 176, 121487. [Google Scholar] [CrossRef]
- Akhnoukh, A.K. Accelerated Bridge Construction Projects Using High Performance Concrete. Case Stud. Constr. Mater. 2020, 12, e00313. [Google Scholar] [CrossRef]
- Segerstedt, A.; Olofsson, T. Supply Chains in the Construction Industry. Supply Chain Manag. Int. J. 2010, 15, 347–353. [Google Scholar] [CrossRef]
- Bizon-Górecka, J. Determinants of the Success of Construction Companies as Participants in Projects Implemented in International Cooperation; TNOiK: Bydgoszcz, Poland, 2011. [Google Scholar]
- Zhao, G. Research and Application of General Construction Technologies for High-Speed Railway in China. Tiedao Xuebao J. China Railw. Soc. 2019, 41, 87–100. [Google Scholar] [CrossRef]
- Vicente, M.Á.; González, D.C.; Mínguez, J. Novel Laser and Post-Tensioned Wire-Based System for Short-Term and Long-Term Monitoring Deflections in Bridges. Struct. Eng. Int. 2019, 29, 382–389. [Google Scholar] [CrossRef]
- Jiang, W.; Fujigaki, M.; Uchida, Y.; Funaki, S. Measurement of Out-of-Plane Displacement in Time Series Using Laser Lines and a Camera with a Diffraction Grating. Opt. Lasers Eng. 2022, 151, 106891. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Eldiasty, M.; Hu, J.W. Safety and Reliability Evaluations of Bridge Behaviors under Ambient Truck Loads through Structural Health Monitoring and Identification Model Approaches. Measurement 2022, 187, 1–11. [Google Scholar] [CrossRef]
- André, A.; Kullberg, J.; Nygren, D.; Mattsson, C.; Nedev, G.; Haghani, R. Re-Use of Wind Turbine Blade for Construction and Infrastructure Applications. IOP Conf. Ser. Mater. Sci. Eng. 2020, 942, 012015. [Google Scholar] [CrossRef]
- Babu, A.J.G.; Suresh, N. Project Management with Time, Cost, and Quality Considerations. Eur. J. Oper. Res. 1996, 88, 320–327. [Google Scholar] [CrossRef]
- Khang, D.B.; Myint, Y.M. Time, Cost and Quality Trade-off in Project Management: A Case Study. Int. J. Proj. Manag. 1999, 17, 249–256. [Google Scholar] [CrossRef]
- Swink, M.; Talluri, S.; Pandejpong, T. Faster, Better, Cheaper: A Study of NPD Project Efficiency and Performance Tradeoffs. J. Oper. Manag. 2006, 24, 542–562. [Google Scholar] [CrossRef]
- Uner, M.M.; Çavuşgil, E.; Çavuşgil, S.T. Build-Operate-Transfer Projects as a Hybrid Mode of Market Entry: The Case of Yavuz Sultan Selim Bridge in Istanbul. Int. Bus. Rev. 2018, 27, 797–802. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Xiao, F.; Hettiarachchi, C. Project Level Management Decisions in Construction and Rehabilitation of Flexible Pavements. Autom. Constr. 2022, 133, 104035. [Google Scholar] [CrossRef]
- Heigermoser, D.; García de Soto, B.; Abbott, E.L.S.; Chua, D.K.H. BIM-Based Last Planner System Tool for Improving Construction Project Management. Autom. Constr. 2019, 104, 246–254. [Google Scholar] [CrossRef]
- Dashti, M.S.; RezaZadeh, M.; Khanzadi, M.; Taghaddos, H. Integrated BIM-Based Simulation for Automated Time-Space Conflict Management in Construction Projects. Autom. Constr. 2021, 132, 103957. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Informetric Analysis and Review of Literature on the Role of BIM in Sustainable Construction. Autom. Constr. 2019, 103, 221–234. [Google Scholar] [CrossRef]
- Park, M. Model-Based Dynamic Resource Management for Construction Projects. Autom. Constr. 2005, 14, 585–598. [Google Scholar] [CrossRef]
- Atta, I.; Bakhoum, E.S.; Marzouk, M.M. Digitizing Material Passport for Sustainable Construction Projects Using BIM. J. Build. Eng. 2021, 43, 103233. [Google Scholar] [CrossRef]
- Zang, J.; Royapoor, M.; Acharya, K.; Jonczyk, J.; Werner, D. Performance Gaps of Sustainability Features in Green Award-Winning University Buildings. Build. Environ. 2022, 207, 108417. [Google Scholar] [CrossRef]
- Crosson, C.; Tong, D.; Zhang, Y.; Zhong, Q. Rainwater as a Renewable Resource to Achieve Net Zero Urban Water in Water Stressed Cities. Resour. Conserv. Recycl. 2021, 164, 105203. [Google Scholar] [CrossRef]
- Cao, H.; Zeng, X.; Wu, L.; Wu, X.; Zhang, Z. A Hybrid Wind and Rainwater Energy Harvesting System for Applications in Sea-Crossing Bridges. Ocean Eng. 2021, 234, 109267. [Google Scholar] [CrossRef]
- Połoński, M. Investment Process and Operation of Buildings and Non-Building Structures. Proces Inwestycyjny i Eksploatacja Obiektów Budowlanych; Warsaw University of Life Sciences: Warsaw, Poland, 2008. [Google Scholar]
- Zavadskas, E.K.; Antucheviciene, J.; Hosseini, M.R.; Martek, I. Sustainable Construction Engineering and Management. Sustainability 2021, 13, 13028. [Google Scholar] [CrossRef]
- Esa, M.R.; Halog, A.; Rigamonti, L. Developing Strategies for Managing Construction and Demolition Wastes in Malaysia Based on the Concept of Circular Economy. J. Mater. Cycles Waste Manag. 2017, 19, 1144–1154. [Google Scholar] [CrossRef]
- Villoria Sáez, P.; Osmani, M. A Diagnosis of Construction and Demolition Waste Generation and Recovery Practice in the European Union. J. Clean. Prod. 2019, 241, 118400. [Google Scholar] [CrossRef]
- Górecki, J.; Núñez-Cacho, P.; Corpas-Iglesias, F.A.; Molina, V. How to Convince Players in Construction Market? Strategies for Effective Implementation of Circular Economy in Construction Sector. Cogent. Eng. 2019, 6, 1690760. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; di Maio, F.; Sprecher, B.; Yang, X.; Tukker, A. An Overview of the Waste Hierarchy Framework for Analyzing the Circularity in Construction and Demolition Waste Management in Europe. Sci. Total Environ. 2022, 803, 149892. [Google Scholar] [CrossRef]
- Bonviu, F. The European Economy: From a Linear to a Circular Economy. Rom. J. Eur. Aff. 2014, 14, 78–91. [Google Scholar]
- Nuñez-Cacho, P.; Górecki, J.; Molina-Moreno, V.; Corpas-Iglesias, F. What Gets Measured, Gets Done: Development of a Circular Economy Measurement Scale for Building Industry. Sustainability 2018, 10, 2340. [Google Scholar] [CrossRef] [Green Version]
- Ellen MacArthur Foundation. What Is a Circular Economy? Available online: https://www.ellenmacarthurfoundation.org/circular-economy/concept (accessed on 1 June 2022).
- Nasir, M.H.A.; Genovese, A.; Acquaye, A.A.; Koh, S.C.L.; Yamoah, F. Comparing Linear and Circular Supply Chains: A Case Study from the Construction Industry. Int. J. Prod. Econ. 2017, 183, 443–457. [Google Scholar] [CrossRef]
- UN Secretary-General. Report of the World Commission on Environment and Development: Our Common Future; United Nations: New York, NY, USA, 1987. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Kaewunruen, S.; Qin, Z. Sustainability of Vibration Mitigation Methods Using Meta-Materials/Structures along Railway Corridors Exposed to Adverse Weather Conditions. Sustainability 2020, 12, 10236. [Google Scholar] [CrossRef]
- Sanayei, M.; Kayiparambil, A.A.; Moore, J.A.; Brett, C.R. Measurement and Prediction of Train-Induced Vibrations in a Full-Scale Building. Eng. Struct. 2014, 77, 119–128. [Google Scholar] [CrossRef]
- Germonpré, M.; Degrande, G.; Lombaert, G. A Study of Modelling Simplifications in Ground Vibration Predictions for Railway Traffic at Grade. J. Sound Vib. 2017, 406, 208–223. [Google Scholar] [CrossRef]
- Ribes-Llario, F.; Marzal, S.; Zamorano, C.; Real, J. Numerical Modelling of Building Vibrations Due to Railway Traffic: Analysis of the Mitigation Capacity of a Wave Barrier. Shock Vib. 2017, 2017, 4813274. [Google Scholar] [CrossRef]
- Beben, D.; Maleska, T.; Bobra, P.; Duda, J.; Anigacz, W. Influence of Traffic-Induced Vibrations on Humans and Residential Building—A Case Study. Int. J. Environ. Res. Public Health 2022, 19, 5441. [Google Scholar] [CrossRef]
- Erkal, A. Impact of Traffic-Induced Vibrations on Residential Buildings and Their Occupants in Metropolitan Cities. Promet Traffic Transp. 2019, 31, 271–285. [Google Scholar] [CrossRef]
- Pau, A.; Vestroni, F. Vibration Assessment and Structural Monitoring of the Basilica of Maxentius in Rome. Mech. Syst. Signal Processing 2013, 41, 454–466. [Google Scholar] [CrossRef]
- Martinsuo, M.; Huemann, M. Reporting Case Studies for Making an Impact. Int. J. Proj. Manag. 2021, 39, 827–833. [Google Scholar] [CrossRef]
- Martinsuo, M.; Huemann, M. Designing Case Study Research. Int. J. Proj. Manag. 2021, 39, 417–421. [Google Scholar] [CrossRef]
- Grant Thornton International Ltd. Women in Business 2020: Putting the Blueprint into Action; Grant Thornton International Ltd.: London, UK, 2020. [Google Scholar]
- Marzouk, M.M.; El-Rasas, T.I. Analyzing Delay Causes in Egyptian Construction Projects. J. Adv. Res. 2014, 5, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzouk, M.M.; el Kherbawy, A.A.; Khalifa, M. Factors Influencing Sub-Contractors Selection in Construction Projects. HBRC J. 2013, 9, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Chiaverini, L.; Wan, H.Y.; Hahn, B.; Cilimburg, A.; Wasserman, T.N.; Cushman, S.A. Effects of Non-Representative Sampling Design on Multi-Scale Habitat Models: Flammulated Owls in the Rocky Mountains. Ecol. Model. 2021, 450, 109566. [Google Scholar] [CrossRef]
- Testa, F.; Iraldo, F.; Frey, M. The Effect of Environmental Regulation on Firms’ Competitive Performance: The Case of the Building & Construction Sector in Some EU Regions. J. Environ. Manag. 2011, 92, 2136–2144. [Google Scholar] [CrossRef]
- Mlinga, R.S.; Wells, J. Collaboration between Formal and Informal Enterprises in the Construction Sector in Tanzania. Habitat Int. 2002, 26, 269–280. [Google Scholar] [CrossRef]
- Cubillos-González, R.A.; Cardoso, G.T. Affordable Housing and Clean Technology Transfer in Construction Firms in Brazil. Technol. Soc. 2021, 67, 101768. [Google Scholar] [CrossRef]
- Ateba, B.B.; Prinsloo, J.J.; Gawlik, R. The Significance of Electricity Supply Sustainability to Industrial Growth in South Africa. Energy Rep. 2019, 5, 1324–1338. [Google Scholar] [CrossRef]
- Firma GOTOWSKI BKiP Sp. z o.o. Nowoczesne Budownictwo Inzynieryjne; Firma GOTOWSKI BKiP Sp. z o.o.: Bydgoszcz, Poland, 2014; p. 42. [Google Scholar]
- Zarząd Dróg Miejskich i Kominikacji Publicznej w Bydgoszczy Stan Awarii Na Moście Uniwersyteckim Nad Rz. Brdą. Obiekt Zostaje Czasowo Zamknięty. Ruszają Prace Naprawcze. Available online: http://www.zdmikp.bydgoszcz.pl/pl/drogi-miejskie/6569-trasa (accessed on 3 January 2022).
- Ewich, A. Analysis of Decision-Making Problems in the Management of Construction Projects with Particular Emphasis on the Principles of Sustainable Development, Scientific Support: Jarosław Górecki. Master’s Thesis, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland, 2022. [Google Scholar]
- Couch, C.; Dennemann, A. Urban Regeneration and Sustainable Development in Britain: The Example of the Liverpool Ropewalks Partnership. Cities 2000, 17, 137–147. [Google Scholar] [CrossRef]
- Ofori, G. Greening the Construction Supply Chain in Singapore. Eur. J. Purch. Supply Manag. 2000, 6, 195–206. [Google Scholar] [CrossRef]
- Chang, S. Beijing: Perspectives on Preservation, Environment, and Development. Cities 1998, 15, 13–25. [Google Scholar] [CrossRef]
- Masalu, D.C.P. Coastal and Marine Resource Use Conflicts and Sustainable Development in Tanzania. Ocean Coast. Manag. 2000, 43, 475–494. [Google Scholar] [CrossRef]
- Enshassi, A. Environmental Concerns for Construction Growth in Gaza Strip. Build. Environ. 2000, 35, 273–279. [Google Scholar] [CrossRef]
- Arce, R.; Gullón, N. The Application of Strategic Environmental Assessment to Sustainability Assessment of Infrastructure Development. Environ. Impact Assess. Rev. 2000, 20, 393–402. [Google Scholar] [CrossRef]
- Manzoor, B.; Othman, I.; Gardezi, S.S.S.; Altan, H.; Abdalla, S.B. BIM-Based Research Framework for Sustainable Building Projects: A Strategy for Mitigating BIM Implementation Barriers. Appl. Sci. 2021, 11, 5397. [Google Scholar] [CrossRef]
- Mandičák, T.; Mésároš, P.; Kanáliková, A.; Špak, M. Supply Chain Management and Big Data Concept Effects on Economic Sustainability of Building Design and Project Planning. Appl. Sci. 2021, 11, 11512. [Google Scholar] [CrossRef]
- Marović, I.; Perić, M.; Hanak, T. A Multi-Criteria Decision Support Concept for Selecting the Optimal Contractor. Appl. Sci. 2021, 11, 1660. [Google Scholar] [CrossRef]
- He, Z.; Chen, H. An ISM-Based Methodology for Interrelationships of Critical Success Factors for Construction Projects in Ecologically Fragile Regions: Take Korla, China as an Example. Appl. Sci. 2021, 11, 4668. [Google Scholar] [CrossRef]
- He, Z.; Chen, H. Critical Factors for Practicing Sustainable Construction Projects in Environmentally Fragile Regions Based on Interpretive Structural Modeling and Cross-Impact Matrix Multiplication Applied to Classification: A Case Study in China. Sustain. Cities Soc. 2021, 74, 103238. [Google Scholar] [CrossRef]
- Fathalizadeh, A.; Hosseini, M.R.; Silvius, A.J.G.; Rahimian, A.; Martek, I.; Edwards, D.J. Barriers Impeding Sustainable Project Management: A Social Network Analysis of the Iranian Construction Sector. J. Clean. Prod. 2021, 318, 128405. [Google Scholar] [CrossRef]
Group of Experts | Quantity | Comments |
---|---|---|
Engineering and technical staff related to construction projects | 80 | Accepted to next round |
Management staff related to construction project | 17 | Accepted to next round |
Other areas | 15 | Not qualified to further studies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górecki, J.; Núñez-Cacho, P. Decision-Making Problems in Construction Projects Executed under the Principles of Sustainable Development—Bridge Construction Case. Appl. Sci. 2022, 12, 6132. https://doi.org/10.3390/app12126132
Górecki J, Núñez-Cacho P. Decision-Making Problems in Construction Projects Executed under the Principles of Sustainable Development—Bridge Construction Case. Applied Sciences. 2022; 12(12):6132. https://doi.org/10.3390/app12126132
Chicago/Turabian StyleGórecki, Jarosław, and Pedro Núñez-Cacho. 2022. "Decision-Making Problems in Construction Projects Executed under the Principles of Sustainable Development—Bridge Construction Case" Applied Sciences 12, no. 12: 6132. https://doi.org/10.3390/app12126132
APA StyleGórecki, J., & Núñez-Cacho, P. (2022). Decision-Making Problems in Construction Projects Executed under the Principles of Sustainable Development—Bridge Construction Case. Applied Sciences, 12(12), 6132. https://doi.org/10.3390/app12126132