Analysis of Recent Mean Temperature Trends and Relationships with Teleconnection Patterns in California (U.S.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Trend Analysis
2.4. Atmospheric Teleconnection Patterns
3. Results and Discussion
3.1. Temperature Trends
3.2. Teleconnection Patterns
4. Conclusions
- -
- Trend analysis for the State of California as a whole shows increases in temperature of about +0.01 °C year−1. In addition, during that period, southern California, Mojave and Sonoran Desert are the regions that have shown the highest statistically significant upsurge (+0.017 °C year−1), while northern areas did to a lesser extent (+0.008 °C year−1). This supports the previous idea that southern California is warming faster than northern California.
- -
- According to local trends, it has been shown temperature increases in autumn and summer (+0.06 °C and +0.035 °C year−1 respectively) from 1980 to 2019. These are found in areas such as the Sierra Nevada and Lake Tahoe for autumn and the east part of the state for summer. These seasons are also the ones that show the highest fraction of stations (36%) with statistically significant positive trends.
- -
- On the monthly scale, the strongest average warming is found in November at +0.04 °C/year. January, July, August and November are the months with the highest fraction (25–38%) of significant trends at the individual stations.
- -
- The coastal cooling effect in summer gives a trend around zero value, contrary to the results of previous research conducted for this season in different time periods.
- -
- As regards the teleconnection patterns, Pacific Decadal Oscillation (PDO) has a positive correlation with average temperatures during the period studied, particularly in coastal areas such as Los Angeles, San Francisco and Monterey. In addition, the highest negative correlations with statistical significance have been noted for the West Pacific Oscillation (WPO) from December to April. Moreover, PDO, WPO, NAO, PNA and EPO are the teleconnection patterns that have shown the highest positive correlation from February to May and might have explanatory potential in mean temperature over those months.
- -
- The Madden–Julian Oscillation (RMM2) is positively correlated with temperature in January and November, with 41.3% of stations have shown a positive correlation in the latter. In November, both EPO and RMM2 have been positively correlated with temperature.
- -
- On the contrary, Antarctic Oscillation (AAO) and Arctic Oscillation patterns (AO) are unlikely to show great influence on average temperature trends in California.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chervenkov, H.; Slavov, K. Theil–Sen Estimator vs. Ordinary Least Squares—Trend Analysis for Selected ETCCDI Climate Indices. Comptes Rendus L’Academie Bulg. Sci. 2019, 72, 47–54. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.; Domínguez-Castro, F. A Review of Environmental Droughts: Increased Risk under Global Warming? Earth-Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Stillman, J.H. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology 2019, 34, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Haines, A.; Ebi, K. The Imperative for Climate Action to Protect Health. N. Engl. J. Med. 2019, 380, 263–273. [Google Scholar] [CrossRef]
- Pumo, D.; Noto, L.V. Exploring the Linkage between Dew Point Temperature and Precipitation Extremes: A Multi-Time-Scale Analysis on a Semi-Arid Mediterranean Region. Atmos. Res. 2021, 254, 105508. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global Surface Temperature Change. Rev. Geophys. 2010, 48, RG4004. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Gomis, M.; Huang, K.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; in press. [Google Scholar]
- Hartmann, D.L.; Tank, A.M.G.K.; Rusticucci, M. IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis. IPCC 2013, AR5, 31–39. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bonfils, C. The Effect of Irrigation on Regional Temperatures: A Spatial and Temporal Analysis of Trends in California, 1934-2002. J. Clim. 2008, 21, 2063–2071. [Google Scholar] [CrossRef]
- DeGaetano, A.T.; Allen, R.J. Trends in Twentieth-Century Temperature Extremes across the United States. J. Clim. 2002, 15, 3188–3205. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Mote, P.W.; Clark, M.P.; Lettenmaier, D.P. Effects of Temperature and Precipitation Variability on Snowpack Trends in the Western United States. J. Clim. 2005, 18, 4545–4561. [Google Scholar] [CrossRef]
- Martinez, C.J.; Maleski, J.J.; Miller, M.F. Trends in Precipitation and Temperature in Florida, USA. J. Hydrol. 2012, 452–453, 259–281. [Google Scholar] [CrossRef]
- Powell, E.J.; Keim, B.D. Trends in Daily Temperature and Precipitation Extremes for the Southeastern United States: 1948–2012. J. Clim. 2015, 28, 1592–1612. [Google Scholar] [CrossRef]
- Vanos, J.K.; Kalkstein, L.S.; Sanford, T.J. Detecting Synoptic Warming Trends across the US Midwest and Implications to Human Health and Heat-Related Mortality. Int. J. Climatol. 2015, 35, 85–96. [Google Scholar] [CrossRef]
- Wartenburger, R.; Hirschi, M.; Donat, M.G.; Greve, P.; Pitman, A.J.; Seneviratne, S.I. Changes in Regional Climate Extremes as a Function of Global Mean Temperature: An Interactive Plotting Framework. Geosci. Model Dev. 2017, 10, 3609–3634. [Google Scholar] [CrossRef] [Green Version]
- Di Luca, A.; de Elía, R.; Bador, M.; Argüeso, D. Contribution of Mean Climate to Hot Temperature Extremes for Present and Future Climates. Weather Clim. Extrem. 2020, 28, 100255. [Google Scholar] [CrossRef]
- Davey, C.A.; Pielke, R.A. Microclimate Exposures of Surface-Based Weather Stations. Bull. Am. Meteorol. Soc. 2005, 86, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Cordero, E.C.; Kessomkiat, W.; Abatzoglou, J.; Mauget, S.A. The Identification of Distinct Patterns in California Temperature Trends. Clim. Change 2011, 108, 357–382. [Google Scholar] [CrossRef]
- LaDochy, S.; Medina, R.; Patzert, W. Recent California Climate Variability: Spatial and Temporal Patterns in Temperature Trends. Clim. Res. 2007, 33, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Swain, D.L.; Horton, D.E.; Singh, D.; Diffenbaugh, N.S. Trends in Atmospheric Patterns Conducive to Seasonal Precipitation and Temperature Extremes in California. Sci. Adv. 2016, 2, e1501344. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.D. Historical Temperature Trends in Los Angeles County. Master’s Thesis, University of Southern California, Los Angeles, CA, USA, 2015. [Google Scholar]
- Sheridan, S.C. North American Weather-Type Frequency and Teleconnection Indices. Int. J. Climatol. 2003, 23, 27–45. [Google Scholar] [CrossRef]
- Ge, Y.; Gong, G. North American Snow Depth and Climate Teleconnection Patterns. J. Clim. 2009, 22, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Bayr, T.; Domeisen, D.I.V.; Wengel, C. The Effect of the Equatorial Pacific Cold SST Bias on Simulated ENSO Teleconnections to the North Pacific and California. Clim. Dyn. 2019, 53, 3771–3789. [Google Scholar] [CrossRef]
- Franzke, C.; Feldstein, S.B.; Lee, S. Synoptic Analysis of the Pacific-North American Teleconnection Pattern. Q. J. R. Meteorol. Soc. 2011, 137, 329–346. [Google Scholar] [CrossRef] [Green Version]
- Mamalakis, A.; Yu, J.Y.; Randerson, J.T.; Aghakouchak, A.; Foufoula-Georgiou, E. A New Interhemispheric Teleconnection Increases Predictability of Winter Precipitation in Southwestern US. Nat. Commun. 2018, 9, 2332. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Lin, H.; Soulard, N. A Comparison of North American Surface Temperature and Temperature Extreme Anomalies in Association with Various Atmospheric Teleconnection Patterns. Atmosphere 2019, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Yang, D.; Xie, S.-P.; Ma, J. Amplified Madden–Julian Oscillation Impacts in the Pacific–North America Region. Nat. Clim. Chang. 2020, 10, 654–660. [Google Scholar] [CrossRef]
- Leathers, D.J.; Yarnal, B.; Palecki, M.A. The Pacific/North American Teleconnection Pattern and United States Climate. Part I: Regional Temperature and Precipitation Associations. J. Clim. 1991, 4, 517–528. [Google Scholar] [CrossRef]
- Baxter, S.; Nigam, S. Key Role of the North Pacific Oscillation-West Pacific Pattern in Generating the Extreme 2013/14 North American Winter. J. Clim. 2015, 28, 8109–8117. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.Y.; Grotjahn, R. Evidence of Specific MJO Phase Occurrence with Summertime California Central Valley Extreme Hot Weather. Adv. Atmos. Sci. 2019, 36, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, G.M.; Moser, K.A.; Bloom, A.M.; Potito, A.P.; Porinchu, D.F.; Holmquist, J.R.; Hughes, J.; Kremenetski, K.V. Prolonged California Aridity Linked to Climate Warming and Pacific Sea Surface Temperature. Sci. Rep. 2016, 6, 33325. [Google Scholar] [CrossRef] [Green Version]
- Schulte, J. Continuum-based Teleconnection Indices of United States Wintertime Temperature Variability. Int. J. Climatol. 2021, 41, E3122–E3141. [Google Scholar] [CrossRef]
- Trouet, V.; Taylor, A.H.; Carleton, A.M.; Skinner, C.N. Interannual Variations in Fire Weather, Fire Extent, and Synoptic-Scale Circulation Patterns in Northern California and Oregon. Theor. Appl. Climatol. 2009, 95, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Barnston, A.G.; Livezey, R.E.; Halpert, M.S. Modulation of Southern Oscillation-Northern Hemisphere Mid-Winter Climate Relationships by the QBO. J. Clim. 1991, 4, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.; Gutzler, D. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon. Weather Rev. Am. Meteorol. Soc. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Goodrich, G.B. Influence of the Pacific Decadal Oscillation on Winter Precipitation and Drought during Years of Neutral ENSO in the Western United States. Weather Forecast. 2007, 22, 116–124. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. North American Precipitation and Temperature Patterns Associated with the El Niño/Southern Oscillation (ENSO). Mon. Weather Rev. 2002, 114, 2352–2362. [Google Scholar] [CrossRef] [Green Version]
- Guirguis, K.; Gershunov, A.; Shulgina, T.; Clemesha, R.E.S.; Ralph, F.M. Atmospheric Rivers Impacting Northern California and Their Modulation by a Variable Climate. Clim. Dyn. 2019, 52, 6569–6583. [Google Scholar] [CrossRef] [Green Version]
- Mills, C.M.; Walsh, J.E. Seasonal Variation and Spatial Patterns of the Atmospheric Component of the Pacific Decadal Oscillation. J. Clim. 2013, 26, 1575–1594. [Google Scholar] [CrossRef]
- Velasco, E.M.; Gurdak, J.J.; Dickinson, J.E.; Ferré, T.P.A.; Corona, C.R. Interannual to Multidecadal Climate Forcings on Groundwater Resources of the U.S. West Coast. J. Hydrol. Reg. Stud. 2017, 11, 250–265. [Google Scholar] [CrossRef] [Green Version]
- Roksvåg, T.; Lutz, J.; Grinde, L.; Dyrrdal, A.V.; Thorarinsdottir, T.L. Consistent Intensity-Duration-Frequency Curves by Post-Processing of Estimated Bayesian Posterior Quantiles. J. Hydrol. 2021, 603, 127000. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric Rivers, Floods and the Water Resources of California. Water 2011, 3, 445–478. [Google Scholar] [CrossRef]
- Allen, R.J.; Luptowitz, R. El Niño-like Teleconnection Increases California Precipitation in Response to Warming. Nat. Commun. 2017, 8, 16055. [Google Scholar] [CrossRef] [PubMed]
- Jones, C. Occurrence of Extreme Precipitation Events in California and Relationships with the Madden-Julian Oscillation. J. Clim. 2000, 13, 3576–3587. [Google Scholar] [CrossRef]
- Luteyn, J.L.; Hickman, J.C. The Jepson Manual: Higher Plants of California; University of California Press: Berkeley, CA, USA, 1993; ISBN 0-520-082559. [Google Scholar]
- Pathak, T.; Maskey, M.; Dahlberg, J.; Kearns, F.; Bali, K.; Zaccaria, D. Climate Change Trends and Impacts on California Agriculture: A Detailed Review. Agronomy 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Killam, D.; Bui, A.; LaDochy, S.; Ramirez, P.; Willis, J.; Patzert, W. California Getting Wetter to the North, Drier to the South: Natural Variability or Climate Change? Climate 2014, 2, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Center, W.R.C. Western Regional Climate Center. In WRCC; Tuweep, Arizona Stn. Report; 2000; Available online: https://wrcc.dri.edu/ (accessed on 16 February 2021).
- He, M.; Gautam, M. Variability and Trends in Precipitation, Temperature and Drought Indices in the State of California. Hydrology 2016, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Ríos Cornejo, D.; Penas, Á.; Álvarez-Esteban, R.; del Río, S. Links between Teleconnection Patterns and Mean Temperature in Spain. Theor. Appl. Climatol. 2015, 122, 1–18. [Google Scholar] [CrossRef]
- Thom, H.C.S. Some Methods of Climatological Analysis; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1966. [Google Scholar]
- Del Río, S.; Anjum Iqbal, M.; Cano-Ortiz, A.; Herrero, L.; Hassan, A.; Penas, A. Recent Mean Temperature Trends in Pakistan and Links with Teleconnection Patterns. Int. J. Climatol. 2013, 33, 277–290. [Google Scholar] [CrossRef]
- Sarricolea, P.; Meseguer-Ruiz, Ó.; Serrano-Notivoli, R.; Soto, M.V.; Martin-Vide, J. Trends of Daily Precipitation Concentration in Central-Southern Chile. Atmos. Res. 2019, 215, 85–98. [Google Scholar] [CrossRef]
- Hijmans, A.R.J.; Phillips, S.; Leathwick, J.; Elith, J.; Hijmans, M.R.J. Dismo: Species Distribution Modeling. 2021. Available online: https://cran.r-project.org/web/packages/dismo/dismo.pdf (accessed on 10 September 2020).
- Kukal, M.; Irmak, S. Long-Term Patterns of Air Temperatures, Daily Temperature Range, Precipitation, Grass-Reference Evapotranspiration and Aridity Index in the USA Great Plains: Part I. Spatial Trends. J. Hydrol. 2016, 542, 953–977. [Google Scholar] [CrossRef] [Green Version]
- Peña-Angulo, D.; Gonzalez-Hidalgo, J.C.; Sandonís, L.; Beguería, S.; Tomas-Burguera, M.; López-Bustins, J.A.; Lemus-Canovas, M.; Martin-Vide, J. Seasonal Temperature Trends on the Spanish Mainland: A Secular Study (1916–2015). Int. J. Climatol. 2021, 41, 3071–3084. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Karmeshu, N. Trend Detection in Annual Temperature & Precipitation Using the Mann Kendall Test—A Case Study to Assess Climate Change on Select States in the Northeastern United States. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2015. [Google Scholar]
- Song, X.; Zhang, J.; Zou, X.; Zhang, C.; AghaKouchak, A.; Kong, F. Changes in Precipitation Extremes in the Beijing Metropolitan Area during 1960–2012. Atmos. Res. 2019, 222, 134–153. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, N. Modifiedmk: Modified Mann Kendall Trend Tests. 2020. Available online: https://www.researchgate.net/publication/348231702_Modifiedmk_Modified_Mann_Kendall_Trend_Tests (accessed on 6 July 2020).
- Liu, Q.; Shepherd, B.; Li, C. Presiduals: An R Package for Residual Analysis Using Probability-Scale Residuals. J. Stat. Softw. 2020, 94, 1–27. [Google Scholar] [CrossRef]
- ArcGIS Desktop: Release 10.8; Environmental Systems Research Institute: Redlands, CA, USA, 2019.
- Barber, X.; Conesa, D.; López-Quílez, A.; Mayoral, A.; Morales, J.; Barber, A. Bayesian Hierarchical Models for Analysing the Spatial Distribution of Bioclimatic Indices. Sort 2017, 41, 277–296. [Google Scholar] [CrossRef]
- Gribov, A.; Krivoruchko, K. Empirical Bayesian Kriging Implementation and Usage. Sci. Total Environ. 2020, 722, 137290. [Google Scholar] [CrossRef]
- Krivoruchko, K. Empirical Bayesian Kriging. ESRI Press 2012, 2012, 6–10. [Google Scholar]
- Newman, M.; Alexander, M.A.; Ault, T.R.; Cobb, K.M.; Deser, C.; Di Lorenzo, E.; Mantua, N.J.; Miller, A.J.; Minobe, S.; Nakamura, H.; et al. The Pacific Decadal Oscillation, Revisited. J. Clim. 2016, 29, 4399–4427. [Google Scholar] [CrossRef] [Green Version]
- Christy, J.R.; Norris, W.B.; Redmond, K.; Gallo, K.P. Methodology and Results of Calculating Central California Surface Temperature Trends: Evidence of Human-Induced Climate Change? J. Clim. 2006, 19, 548–563. [Google Scholar] [CrossRef] [Green Version]
- Niles, M.T.; Mueller, N.D. Farmer Perceptions of Climate Change: Associations with Observed Temperature and Precipitation Trends, Irrigation, and Climate Beliefs. Glob. Environ. Chang. 2016, 39, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, S.R.; López-Moreno, J.I.; Ma, C.; Weber, A.N.; Pfohl, A.K.D.; Kampf, S.K.; Kappas, M. Spatio-Temporal Snowmelt Variability across the Headwaters of the Southern Rocky Mountains. Front. Earth Sci. 2017, 11, 505–514. [Google Scholar] [CrossRef]
- Guarín, A.; Taylor, A.H. Drought Triggered Tree Mortality in Mixed Conifer Forests in Yosemite National Park, California, USA. For. Ecol. Manag. 2005, 218, 229–244. [Google Scholar] [CrossRef]
- Hayhoe, K.; Cayan, D.; Field, C.B.; Frumhoff, P.C.; Maurer, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; et al. Emissions Pathways, Climate Change, and Impacts on California. Proc. Natl. Acad. Sci. USA 2004, 101, 12422–12427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trenberth, K.E. The Impact of Climate Change and Variability on Heavy Precipitation, Floods, and Droughts. In Encyclopedia of Hydrological Sciences; John Wiley & Sons Ltd.: London, UK, 2005; Available online: https://www.researchgate.net/publication/227555971_The_Impact_of_Climate_Change_and_Variability_on_Heavy_Precipitation_Floods_and_Droughts (accessed on 2 May 2022).
- Williams, A.P.; Seager, R.; Abatzoglou, J.T.; Cook, B.I.; Smerdon, J.E.; Cook, E.R. Contribution of Anthropogenic Warming to California Drought during 2012-2014. Geophys. Res. Lett. 2015, 42, 6819–6828. [Google Scholar] [CrossRef] [Green Version]
- Weiss-Penzias, P.S.; Bank, M.S.; Clifford, D.L.; Torregrosa, A.; Zheng, B.; Lin, W.; Wilmers, C.C. Marine Fog Inputs Appear to Increase Methylmercury Bioaccumulation in a Coastal Terrestrial Food Web. Sci. Rep. 2019, 9, 17611. [Google Scholar] [CrossRef] [Green Version]
- Torregrosa, A.; O’brien, T.A.; Faloona, I.C. Coastal Fog, Climate Change, and the Environment. Eos 2014, 95, 473–474. [Google Scholar] [CrossRef] [Green Version]
- Lebassi, B.; Gonzalez, J.; Fabris, D.; Maurer, E.; Miller, N.; Milesi, C.; Switzer, P.; Bornstein, R. Observed 1970-2005 Cooling of Summer Daytime Temperatures in Coastal California. J. Clim. 2009, 22, 3558–3573. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, J.A.; Dawson, T.E. Climatic Context and Ecological Implications of Summer Fog Decline in the Coast Redwood Region. Proc. Natl. Acad. Sci. USA 2010, 107, 4533–4538. [Google Scholar] [CrossRef] [Green Version]
- Tamrazian, A.; Ladochy, S.; Willis, J.; Patzert, W.C. Heat Waves in Southern California: Are They Becoming More Frequent and Longer Lasting? In Yearbook of the Association of Pacific Coast Geographers. Available online: https://climate.nasa.gov/files/LAHeatWaves-JournalArticle.pdf (accessed on 18 June 2021).
- Basu, R.; Rau, R.; Pearson, D.; Malig, B. Temperature and Term Low Birth Weight in California. Am. J. Epidemiol. 2018, 187, 2306–2314. [Google Scholar] [CrossRef]
- The California Department of Water Resources. California Climate Science and Data: For Water Resources Management; California Water Library: Sacramento, CA, USA, 2015.
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic Warming Has Increased Drought Risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of Climate Change on the Future of Biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, M.C.; Hendon, H.H. An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Weather Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Dasgupta, P.; Metya, A.; Naidu, C.V.; Singh, M.; Roxy, M.K. Exploring the Long-Term Changes in the Madden Julian Oscillation Using Machine Learning. Sci. Rep. 2020, 10, 18567. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Di, P.; Chen, S.-H.; Damassa, J. Relationships of Rainy Season Precipitation and Temperature to Climate Indices in California: Long-Term Variability and Extreme Events. J. Clim. 2018, 31, 1921–1942. [Google Scholar] [CrossRef]
- Barron, J.A.; Anderson, L. Enhanced Late Holocene ENSO/PDO Expression along the Margins of the Eastern North Pacific. Quat. Int. 2011, 235, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Pathak, T.B.; Parker, L.E.; Ostoja, S.M. Impacts of Large-Scale Teleconnection Indices on Chill Accumulation for Specialty Crops in California. Sci. Total Environ. 2021, 791, 148025. [Google Scholar] [CrossRef]
- Alfaro, E.; Gershunov, A.; Cayan, D.; Steinemann, A.; Pierce, D.; Barnett, T. A Method for Prediction of California Summer Air Surface Temperature. Eos 2004, 85, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Chang, E.K.M.; Kim, H.M.; Zhang, M.; Wang, W. Impacts of the Madden-Julian Oscillation on Storm-Track Activity, Surface Air Temperature, and Precipitation over North America. J. Clim. 2018, 31, 6113–6134. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S. Definition of Antarctic Oscillation Index. Geophys. Res. Lett. 1999, 26, 459–462. [Google Scholar] [CrossRef] [Green Version]
January | February | March | April | May | June | July | August | September | |
Slope | 0.04 | 0 | 0.02 | 0.02 | 0.01 | 0.03 | 0.03 | 0.03 | 0.01 |
p value | 0.06 | 0.87 | 0.37 | 0.53 | 0.44 | 0.07 | 0.03 * | 0.01 * | 0.23 |
October | November | December | Winter | Spring | Summer | Autumn | Annual | ||
Slope | 0.01 | 0.04 | 0.02 | 0.02 | 0.01 | 0.03 | 0.03 | 0.01 | |
p value | 0.58 | 0.02 * | 0.25 | 0.25 | 0.38 | 0.02 * | 0.02 * | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Pérez, A.; Álvarez-Esteban, R.; Penas, Á.; del Río, S. Analysis of Recent Mean Temperature Trends and Relationships with Teleconnection Patterns in California (U.S.). Appl. Sci. 2022, 12, 5831. https://doi.org/10.3390/app12125831
González-Pérez A, Álvarez-Esteban R, Penas Á, del Río S. Analysis of Recent Mean Temperature Trends and Relationships with Teleconnection Patterns in California (U.S.). Applied Sciences. 2022; 12(12):5831. https://doi.org/10.3390/app12125831
Chicago/Turabian StyleGonzález-Pérez, Alejandro, Ramón Álvarez-Esteban, Ángel Penas, and Sara del Río. 2022. "Analysis of Recent Mean Temperature Trends and Relationships with Teleconnection Patterns in California (U.S.)" Applied Sciences 12, no. 12: 5831. https://doi.org/10.3390/app12125831
APA StyleGonzález-Pérez, A., Álvarez-Esteban, R., Penas, Á., & del Río, S. (2022). Analysis of Recent Mean Temperature Trends and Relationships with Teleconnection Patterns in California (U.S.). Applied Sciences, 12(12), 5831. https://doi.org/10.3390/app12125831