Effects of Auditory Pre-Stimulation on Cognitive Task Performance in a Noisy Environment
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Study Design
2.2.1. Experiment 1
2.2.2. Experiment 2
2.3. Experiment Variables
2.3.1. STM/WM Tasks
2.3.2. Mental Workload Ratings
2.4. Experimental Environment and Procedures
2.4.1. Experimental Environment
2.4.2. Procedures
2.5. Statistical Analyses
3. Results and Discussion
3.1. Experiment 1
3.1.1. Results
3.1.2. Discussion
3.2. Experiment 2
3.2.1. Results
3.2.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rasmussen, J. Human error and the problem of causality in analysis of accidents. Philos. Trans. R. Soc. B 1990, 327, 449–462. [Google Scholar]
- Bhavsar, P.; Srinivasan, B.; Srinivasan, R. Pupillometry based real-time monitoring of operator’s cognitive workload to prevent human error during abnormal situations. Ind. Eng. Chem. Res. 2015, 55, 3372–3382. [Google Scholar] [CrossRef]
- Dinges, D.F. An overview of sleepiness and accidents. J. Sleep Res. 1995, 4, 4–14. [Google Scholar] [CrossRef]
- Reason, J. Human Error, 1st ed.; Cambridge University Press: New York, NY, USA, 1990; Available online: https://books.google.co.kr/books/about/Human_Error.html?id=WJL8NZc8lZ8C&redir_esc=y (accessed on 4 June 2022).
- Moray, N.; Senders, J.W. Human Error: Cause, Prediction, and Reduction: Analysis and Synthesis, 1st ed.; CRC Press: Boca Raton, FL, USA, 1991; Available online: https://books.google.co.kr/books?id=8l_wDwAAQBAJ&hl=ko (accessed on 4 June 2022).
- Hals, A. Well Integrity Assessment: Challenges Related to Human and Organizational Factors—The Case Study of Veslefrikk. Master’s Thesis, Department Production and Quality Engineering, Norwegian University of Science and Technology, Trondheim, Norway, 2015. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2351199/13058_FULLTEXT.pdf?sequence=1 (accessed on 4 June 2022).
- Park, J.H.; Hong, Y.S.; Kim, E.H.; Kim, S.H.; Jo, S.P. Application Case Study of Human Error Prevention in Industrial Safety; Report of OSHRI; Occupational Safety and Health Research Institute (OSHRI): Incheon, Korea, 2013; pp. 1–73. [Google Scholar]
- Zhang, J.; Pang, L.; Cao, X.; Wanyan, X.; Wang, X.; Liang, J.; Zhang, L. The effects of elevated carbon dioxide concentration and mental workload on task performance in an enclosed environmental chamber. Build. Environ. 2020, 178, 106938. [Google Scholar] [CrossRef]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef]
- Larson, G.E.; Alderton, D.L.; Neideffer, M.; Underhill, E. Further evidence on dimensionality and correlates of the Cognitive Failures Questionnaire. Br. J. Psychol. 2011, 88, 29–38. [Google Scholar] [CrossRef]
- Mihal, W.L.; Barrett, G.V. Individual differences in perceptual information processing and their relation to automobile accident involvement. J. Appl. Psychol. 1976, 61, 229–233. [Google Scholar] [CrossRef]
- Murata, A. An attempt to evaluate mental workload using wavelet transform of EEG. Hum. Factors 2005, 47, 498–508. [Google Scholar] [CrossRef]
- Al-Shargie, F.; Tariq, U.; Babiloni, F.; Al-Nashash, H. Cognitive vigilance enhancement using audio stimulation of pure tone at 250 Hz. IEEE Access 2021, 9, 22955–22970. [Google Scholar] [CrossRef]
- Othman, E.; Yusoff, A.N.; Mohamad, M.; Manan, H.A.; Giampietro, V.; Abd Hamid, A.I.; Dzulkifli, M.A.; Osman, S.S.; Burhanuddin, W.I.D.W. Low intensity white noise improves performance in auditory working memory task: An fMRI study. Heliyon 2019, 5, e02444. [Google Scholar] [CrossRef] [Green Version]
- Sikström, S.; Söderlund, G. Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol. Rev. 2007, 114, 1047. [Google Scholar] [CrossRef] [Green Version]
- Söderlund, G. Positive effects of noise on cognitive performance: Explaining the moderate brain arousal model. In Proceedings of the 9th Congress of the International Comission on the Biological Effects of Noise, Mashantucket, CT, USA, 21–25 July 2008; pp. 378–386. [Google Scholar]
- Bodala, I.P.; Li, J.; Thakor, N.V.; Al-Nashash, H. EEG and eye tracking demonstrate vigilance enhancement with challenge integration. Front. Hum. Neurosci. 2016, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Bodala, I.P.; Ke, Y.; Mir, H.; Thakor, N.V.; Al-Nashash, H. Cognitive workload estimation due to vague visual stimuli using saccadic eye movements. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014. [Google Scholar]
- Fernández, M.D.; Quintana, S.; Chavarría, N.; Ballesteros, J.A. Noise exposure of workers of the construction sector. Appl. Acoust. 2009, 70, 753–760. [Google Scholar] [CrossRef]
- Stansfeld, S.A.; Matheson, M.P. Noise pollution: Non-auditory effects on health. Br. Med. Bull. 2003, 68, 243–257. [Google Scholar] [CrossRef]
- Jahncke, H.; Hygge, S.; Halin, N.; Green, A.M.; Dimberg, K. Open-plan office noise: Cognitive performance and restoration. J. Environ. Psychol. 2011, 31, 373–382. [Google Scholar] [CrossRef]
- Smith-Jackson, T.L.; Klein, K.W. Open-plan offices: Task performance and mental workload. J. Environ. Psychol. 2009, 29, 279–289. [Google Scholar] [CrossRef]
- Venetjoki, N.; Kaarlela-Tuomaala, A.; Keskinen, E.; Hongisto, V. The effect of speech and speech intelligibility on task performance. Ergonomics 2006, 49, 1068–1091. [Google Scholar] [CrossRef]
- Jones, D.; Morris, N. Irrelevant speech and serial recall: Implications for theories of attention and working memory. Scand. J. Psychol. 1992, 33, 212–229. [Google Scholar] [CrossRef]
- Banbury, S.; Berry, D.C. Disruption of office-related tasks by speech and office noise. Br. J. Psychol. 2011, 89, 499–517. [Google Scholar] [CrossRef]
- Schlittmeier, S.J.; Hellbrück, J.; Thaden, R.; Vorländer, M. The impact of background speech varying in intelligibility: Effects on cognitive performance and perceived disturbance. Ergonomics 2008, 51, 719–736. [Google Scholar] [CrossRef]
- Haka, M.; Haapakangas, A.; Keränen, J.; Hakala, J.; Keskinen, E.; Hongisto, V. Performance effects and subjective disturbance of speech in acoustically different office types—A laboratory experiment. Indoor Air 2009, 19, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Tomé, D.; Neves, P.; Silva, D.; Rodrigues, M.A. The interactive effect of occupational noise on attention and short-term memory: A pilot study. Noise Health 2018, 20, 190. [Google Scholar] [PubMed]
- Clark, C.; Paunovic, K. WHO environmental noise guidelines for the european region: A systematic review on environmental noise and cognition. Int. J. Environ. Res. Public Health 2018, 15, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, R.; Smith, R.B.; Karim, Y.B.; Shen, C.; Drummond, K.; Teng, C.; Toledano, M.B. Noise pollution and human cognition: An updated systematic review and meta-analysis of recent evidence. Environ. Int. 2022, 158, 106905. [Google Scholar] [CrossRef]
- Tak, S.; Davis, R.R.; Calvert, G.M. Exposure to hazardous workplace noise and use of hearing protection devices among US workers—NHANES 1999–2004. Am. J. Ind. Med. 2009, 52, 358–371. [Google Scholar] [CrossRef] [Green Version]
- Kerns, E.; Masterson, E.A.; Themann, C.L.; Calvert, G.M. Cardiovascular conditions, hearing difficulty, and occupational noise exposure within US industries and occupations. Am. J. Ind. Med. 2018, 61, 477–491. [Google Scholar] [CrossRef]
- Magaud-Camus, I.; Floury, M.C.; Vinck, L.; Waltisperger, D. Le Bruit au Travail en 2003: Une Nuisance qui Touche Trois Salariés sur Dix. Dir. L’animation Rech. Études Stat. Dares 2005, 25, 1–6. Available online: https://www.inrs.fr/media.html?refINRS=TF%20142 (accessed on 4 June 2022).
- Rydzynski, K.; Jung, T. Health Risks from Exposure to Noise from Personal Music Players. Briefing of Scenihr 2008. pp. 2–81. Available online: https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_018.pdf (accessed on 4 June 2022).
- Kim, S.C.; Park, K.S.; Kim, K.W. The study on affecting subject accomplishment by noise. J. Ergon. Soc. Korea 2010, 29, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Oberauer, K.; Süß, H.M.; Wilhelm, O.; Wittman, W.W. The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence 2003, 31, 167–193. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T. Working Memory Load in the Initial Learning Phase Facilitates Relearning: A Study of Vocabulary Learning. Percept. Mot. Ski. 2008, 106, 317–327. [Google Scholar] [CrossRef]
- Wickens, C.D.; Hollands, J.G.; Banbury, S.; Parasuraman, R. Engineering Psychology and Human Performance, 4th ed.; Psychology Press: New York, NY, USA, 2013; Available online: https://books.google.co.kr/books?id=MLq1tAEACAAJ&printsec=frontcover&dq=editions:ISBN0205945740&hl=ko (accessed on 4 June 2022)ISBN 0205945740.
- Norman, D.A. Categorization of Action Slips. Psychol. Rev. 1990, 88, 1–15. [Google Scholar] [CrossRef]
- Baddeley, A. Working Memory. Philos. Trans. R. Soc. B 1983, 302, 311–324. [Google Scholar]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Shih, Y.N.; Huang, R.H.; Chiang, H.S. Correlation between work concentration level and background music: A pilot study. Work 2009, 33, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.F.; Schellenberg, E.G.; Husain, G. Arousal, mood, and the Mozart effect. Psychol. Sci. 2001, 12, 248–251. [Google Scholar] [CrossRef]
- Mammarella, N.; Fairfield, B.; Cornoldi, C. Does music enhance cognitive performance in healthy older adults? The Vivaldi effect. Aging Clin. Exp. Res. 2013, 19, 394–399. [Google Scholar] [CrossRef]
- Schellenberg, E.G.; Weiss, M.W. Music and cognitive abilities. Psychol. Music 2013, 1, 499–550. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Jeo, S.; Chae, M.; Bak, Y.; Lee, H.; Cho, D. Analysis of the Effect of Sound on the Improvement of Concentration. Proc. Symp. Korean Inst. Commun. Inf. Sci. 2018, 50–51. Available online: https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE07564987&mark=0&useDate=&ipRange=N&accessgl=Y&language=ko_KR&hasTopBanner=true (accessed on 4 June 2022).
- Hong, S.H.; Kim, H.S. The Effects of Meditation Music Programs on Attention and Learning Attitudes among College Students. J. Educ. Stud. 2010, 41, 27–44. Available online: https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE01791156&mark=0&useDate=&ipRange=N&accessgl=Y&language=ko_KR&hasTopBanner=true (accessed on 4 June 2022).
- Jang, S.W.; Lee, H.C. The Effect of Musical Genre on Mental Focusing. Korean Psychol. Assoc. 2008, 1, 262–263. Available online: https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE06377578&mark=0&useDate=&ipRange=N&accessgl=Y&language=ko_KR&hasTopBanner=true (accessed on 4 June 2022).
- Corsi, P.M. Human Memory and the Medial Temporal Region of the Brain. Ph.D. Dissertation, Department Psychology, McGill University, Montreal, QC, Canada, 1972. Available online: https://www.bac-lac.gc.ca/eng/services/theses/Pages/item.aspx?idNumber=895261380 (accessed on 4 June 2022).
- Wechsler, D. The Measurement of Adult Intelligence, 1st ed.; Williams & Wilkins Co.: Philadelphia, PA, USA, 1939; Available online: https://books.google.co.kr/books/about/The_Measurement_of_Adult_Intelligence.html?id=Xq5LAAAAMAAJ&redir_esc=y (accessed on 4 June 2022).
- Kirchner, W.K. Age Differences in Short-Term Retention of Rapidly Changing Information. J. Exp. Psychol. 1958, 55, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Sharma, R.; Bijlani, R.L. Effect of meditation on stress-induced changes in cognitive functions. J. Altern. Complement. Med. 2011, 17, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Daud, S.S.; Sudirman, R. Effect of White Noise Stimulation and Visual Working Memory Task on Brain Signal. ARPN J. Eng. Appl. Sci. 2015, 10, 8491–8499. Available online: http://www.arpnjournals.org/jeas/research_papers/rp_2015/jeas_1015_2750.pdf (accessed on 4 June 2022).
- Eschenbrenner, A.J., Jr. Effects of intermittent noise on the performance of a complex psychomotor task. Hum. Factors 1971, 13, 59–63. [Google Scholar] [CrossRef]
- Smith, A.; Waters, B.; Jones, H. Effects of prior exposure to office noise and music on aspects of working memory. Noise Health 2010, 12, 235–243. [Google Scholar] [CrossRef]
- Hyeon, B.S.; Yang, B.H.; Oah, S.Z. The Effects of Noise-Masking and Task Complexity on Performance and Psychological Responses. Korean J. Ind. Organ. Psychol. 2002, 15, 147–167. Available online: https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE06370153&mark=0&useDate=&ipRange=N&accessgl=Y&language=ko_KR&hasTopBanner=true (accessed on 4 June 2022).
- Loewen, L.J.; Suedfeld, P. Cognitive and arousal effects of masking office noise. Environ. Behav. 1992, 24, 381–395. [Google Scholar] [CrossRef]
- de Renzi, E.; Nichelli, P. Verbal and non-verbal short-term memory impairment following hemispheric damage. Cortex 1975, 11, 341–354. [Google Scholar] [CrossRef]
- della Sala, S.; Gray, C.; Baddeley, A.; Allamano, N.; Wilson, L. Pattern span: A tool for unwelding visuo–spatial memory. Neuropsychologia 1999, 37, 1189–1199. [Google Scholar] [CrossRef]
- Joyce, E.M.; Robbins, T.W. Frontal lobe function in Korsakoff and non-Korsakoff alcoholics: Planning and spatial working memory. Neuropsychologia 1991, 29, 709–723. [Google Scholar] [CrossRef]
- Milner, B. Interhemispheric Differences in the Localization of Psychological Processes in Man. Br. Med. Bull. 1971, 27, 272–277. Available online: https://psycnet.apa.org/record/1972-32010-001 (accessed on 4 June 2022). [CrossRef] [PubMed]
- Rowe, G.; Hasher, L.; Turcotte, J. Age differences in visuospatial working memory. Psychol. Aging 2008, 23, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Smyth, M.M.; Scholey, K.A. Interference in immediate spatial memory. Mem. Cogn. 1994, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vilkki, J.; Holst, P. Deficient programming in spatial learning after frontal lobe damage. Neuropsychologia 1989, 27, 971–976. [Google Scholar] [CrossRef]
- Conti-Ramsden, G. Processing and linguistic markers in young children with specific language impairment (SLI). J. Speech Lang. Hear. Res. 2003, 46, 1029–1037. [Google Scholar] [CrossRef]
- RHick, F.; Botting, N.; Conti-Ramsden, G. Short-term memory and vocabulary development in children with Down syndrome and children with specific language impairment. Dev. Med. Child Neurol. 2005, 47, 532–538. [Google Scholar] [CrossRef]
- Orsini, A.; Grossi, D.; Capitani, E.; Laiacona, M.; Papagno, C.; Vallar, G. Verbal and spatial immediate memory span: Normative data from 1355 adults and 1112 children. Ital. J. Neuro. Sci. 1987, 8, 537–548. [Google Scholar] [CrossRef]
- Owen, A.M.; Hampshire, A.; Grahn, J.A.; Stenton, R.; Dajani, S.; Burns, A.S.; Howard, R.J.; Ballard, C.G. Putting brain training to the test. Nature 2010, 465, 775–778. [Google Scholar] [CrossRef] [Green Version]
- Braver, T.S.; Cohen, J.D.; Nystrom, L.E.; Jonides, J.; Smith, E.E.; Noll, D.C. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997, 5, 49–62. [Google Scholar] [CrossRef]
- Cohen, J.D.; Forman, S.D.; Braver, T.S.; Casey, B.J.; Servan-Schreiber, D.; Noll, D.C. Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Hum. Brain Mapp. 1994, 1, 293–304. [Google Scholar] [CrossRef]
- Jonides, J.; Schumacher, E.H.; Smith, E.E.; Lauber, E.J.; Awh, E.; Minoshima, S.; Koeppe, R.A. Verbal working memory load affects regional brain activation as measured by PET. J. Cogn. Neurosci. 1997, 9, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, E.H.; Lauber, E.; Awh, E.; Jonides, J.; Smith, E.E.; Koeppe, R.A. PET evidence for an amodal verbal working memory system. Neuroimage 1996, 3, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluck, M.A.; Mercado, E.; Myers, C.E. Learning and Memory: From Brain to Behavior, 2nd ed.; Worth Publishers: New York, NY, USA, 2013; Available online: https://books.google.com.ec/books?id=wDjHCwAAQBAJ&printsec=frontcover (accessed on 4 June 2022).
- Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 2010, 18, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.M.; McMillan, K.M.; Laird, A.R.; Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Oberauer, K. Binding and inhibition in working memory: Individual and age differences in short-term recognition. J. Exp. Psychol. Gen. 2005, 134, 368–387. [Google Scholar] [CrossRef] [Green Version]
- Borg, G.A. Psychophysical Bases of Perceived Exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; SAGE: Los Angeles, CA, USA, 2009; Available online: https://books.google.co.kr/books?id=a6FLF1YOqtsC&dq=Discovering+statistics+using+SPSS+3rd+ed&hl=ko&sa=X&redir_esc=y (accessed on 4 June 2022).
- Girden, E.R. ANOVA: Repeated Measures; SAGE: Los Angeles, CA, USA, 1992; Available online: https://books.google.co.kr/books?hl=ko&lr=&id=JomGKpjnfPcC&oi=fnd&pg=PP7&dq=Girden,+E.+R.+(1992).+ANOVA:+Repeated+measures.+Los+Angeles,+CA:+SAGE.&ots=myWAFcXi7y&sig=Z5vjWsUf2un15bUPFvoxMfm_EWI&redir_esc=y#v=onepage&q&f=false (accessed on 4 June 2022).
- Way, T.J.; Long, A.; Weihing, J.; Ritchie, R.; Jones, R.; Bush, M.; Shinn, J.B. Effect of noise on auditory processing in the operating room. J. Am. Coll. Surg. 2013, 216, 933–938. [Google Scholar] [CrossRef]
- Salame, P.; Baddeley, A. Effects of background music on phonological short-term memory. Q. J. Exp. Psychol. 1989, 41, 107–122. [Google Scholar] [CrossRef]
- Golmohammadi, R.; Darvishi, E.; Faradmal, J.; Poorolajal, J.; Aliabadi, M. Attention and short-term memory during occupational noise exposure considering task difficulty. Appl. Acoust. 2020, 158, 107065. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, W.; Fu, B.; Nie, J. Study on the Effects of Noise on Crew’s Mental Workload in Information Processing. In Proceedings of the MMESE 2018: Man-Machine-Environment System Engineering, Nanjing, China, 20–22 October 2018; Springer: Singapore, 2018; pp. 393–399. [Google Scholar] [CrossRef]
- Park, S.; Kyung, G.; Choi, D.; Yi, J.; Lee, S.; Choi, B.; Lee, S. Effects of display curvature and task duration on proofreading performance, visual discomfort, visual fatigue, mental workload, and user satisfaction. Appl. Ergon. 2019, 78, 26–36. [Google Scholar] [CrossRef]
- Szalma, J.L.; Warm, J.S.; Matthews, G.; Dember, W.N.; Weiler, E.M.; Meier, A.; Eggemeier, F.T. Effects of sensory modality and task duration on performance, workload, and stress in sustained attention. Human Factors 2004, 46, 219–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canbek, K.; Willershausen, B. Survey of the Effectiveness of Masking Noises during Dental Treatment—A Pilot Study. Quintessence Int. 2004, 35, 563–570. Available online: http://www.quintpub.com/userhome/qi/qi_35_7_canbek_10.pdf (accessed on 4 June 2022). [PubMed]
Experiment | Condition | Pre-Stimulation | Environment |
---|---|---|---|
1 | 1. | Non | Quiet-noise |
2. | Field-noise | ||
2 | 3. | Quiet noise | Field-noise |
4. | White noise | ||
Field noise | |||
6. | Mixed noise |
Condition | ||||||
---|---|---|---|---|---|---|
Measure | ||||||
STM/WMTask Score | ||||||
Corsi block-tapping | 4.63 (1.05) | 4.79 (0.58) | 4.42 (1.21) | 4.67 (0.76) | 4.42 (1.13) | |
Digit span | 6.75 (2.50) | 6.50 (2.46) | 6.58 (2.87) | 7.54 (2.30) | 7.96 (1.82) | |
3-back | 1.83 (1.23) | 1.88 (1.07) | 1.92 (1.05) | 1.83 (1.00) | 1.96 (0.95) | |
Mental Workload | ||||||
Corsi block-tapping | 1.12 (0.90) | 1.45 (1.61) | 1.50 (1.98) | 1.70 (1.45) | 1.91 (1.79) | |
Digit span | 3.00 (1.47) | 3.87 (2.07) | 3.91 (2.26) | 3.62 (1.63) | 3.66 (2.39) | |
3-back | 4.20 (2.02) | 5.45 (2.39) | 5.12 (2.64) | 5.16 (2.40) | 5.16 (2.79) | |
Overall | 3.37 (1.49) | 4.25 (1.67) | 4.04 (2.19) | 3.83 (1.71) | 3.83 (2.23) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.; Kim, K.; Ahn, D.; Lee, H.; Son, M.; Beck, D. Effects of Auditory Pre-Stimulation on Cognitive Task Performance in a Noisy Environment. Appl. Sci. 2022, 12, 5823. https://doi.org/10.3390/app12125823
An S, Kim K, Ahn D, Lee H, Son M, Beck D. Effects of Auditory Pre-Stimulation on Cognitive Task Performance in a Noisy Environment. Applied Sciences. 2022; 12(12):5823. https://doi.org/10.3390/app12125823
Chicago/Turabian StyleAn, Sehee, Kyeongtae Kim, Dohun Ahn, Haehyun Lee, Minseok Son, and Donghyun Beck. 2022. "Effects of Auditory Pre-Stimulation on Cognitive Task Performance in a Noisy Environment" Applied Sciences 12, no. 12: 5823. https://doi.org/10.3390/app12125823
APA StyleAn, S., Kim, K., Ahn, D., Lee, H., Son, M., & Beck, D. (2022). Effects of Auditory Pre-Stimulation on Cognitive Task Performance in a Noisy Environment. Applied Sciences, 12(12), 5823. https://doi.org/10.3390/app12125823