Spectroscopic and Microscopic Characterization of Flashed Glasses from Stained Glass Windows
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thickness Measurements
3.2. Chemical Characterization
3.2.1. Field Emission Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy and UV-Vis-IR Spectroscopy
3.2.2. Laser-Induced Breakdown Spectroscopy
3.2.3. Laser-Induced Fluorescence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ceglia, A.; Meulebroeck, W.; Wouters, H.; Baert, K.; Nys, K.; Terryn, H.; Thienpont, H. Using Optical Spectroscopy to Characterize the Material of a 16th c. Stained Glass Window; Thienpont, H., Meulebroeck, W., Nys, K., Vanclooster, D., Eds.; Routledge: Kent, UK, 2012; p. 84220A. [Google Scholar]
- Rich, C.; Mitchell, M.; Ward, R. Stained Glass Basics: Techniques, Tools & Projects; Sterling Publishing Company, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Weyl, W.A. Coloured Glasses; Society of Glass Technology: Sheffield, UK, 1951; ISBN 9780900682797. [Google Scholar]
- Drünert, F.; Blanz, M.; Pollok, K.; Pan, Z.; Wondraczek, L.; Möncke, D. Copper-Based Opaque Red Glasses—Understanding the Colouring Mechanism of Copper Nanoparticles in Archaeological Glass Samples. Opt. Mater. 2018, 76, 375–381. [Google Scholar] [CrossRef]
- Meulebroeck, W.; Wouters, H.; Nys, K.; Thienpont, H. Authenticity Screening of Stained Glass Windows Using Optical Spectroscopy. Sci. Rep. 2016, 6, 37726. [Google Scholar] [CrossRef] [PubMed]
- Adlington, L.W.; Freestone, I.C. Using Handheld PXRF to Study Medieval Stained Glass: A Methodology Using Trace Elements. MRS Adv. 2017, 2, 1785–1800. [Google Scholar] [CrossRef]
- Marchesi, V.; Negri, E.; Messiga, B.; Riccardi, M.P. Medieval Stained Glass Windows from Pavia Carthusian Monastery (Northern Italy). Geol. Soc. Lond. Spec. Publ. 2006, 257, 217–227. [Google Scholar] [CrossRef]
- Alonso Abad, M.P.; Capel, F.; Valle Fuentes, F.J.; de Pablos Pérez, Á.; Ortega-Feliú, I.; Gómez-Tubio, B.M.; Respaldiza Galisteo, M.Á. Caracterización de Un Vidrio Rojo Medieval Procedente de Las Vidrieras Del Monasterio de Las Huelgas de Burgos. Bol. Soc. Esp. Ceram. Vidr. 2009, 48, 179–186. [Google Scholar]
- Farges, F.; Etcheverry, M.P.; Scheidegger, A.; Grolimund, D. Speciation and Weathering of Copper in “Copper Red Ruby” Medieval Flashed Glasses from the Tours Cathedral (XIII Century). Appl. Geochem. 2006, 21, 1715–1731. [Google Scholar] [CrossRef]
- Kunicki-Goldfinger, J.J.; Freestone, I.C.; McDonald, I.; Hobot, J.A.; Gilderdale-Scott, H.; Ayers, T. Technology, Production and Chronology of Red Window Glass in the Medieval Period—Rediscovery of a Lost Technology. J. Archaeol. Sci. 2014, 41, 89–105. [Google Scholar] [CrossRef]
- Palomar, T. Chemical Composition and Alteration Processes of Glasses from the Cathedral of León (Spain). Bol. Soc. Esp. Ceram. Vidr. 2018, 57, 101–111. [Google Scholar] [CrossRef]
- Machado, A.; Wolf, S.; Alves, L.C.; Katona-Serneels, I.; Serneels, V.; Trümpler, S.; Vilarigues, M. Swiss Stained-Glass Panels: An Analytical Study. Microsc. Microanal. 2017, 23, 878–890. [Google Scholar] [CrossRef]
- Atrei, A.; Scala, A.; Giamello, M.; Uva, M.; Pulselli, R.M.; Marchettini, N. Chemical Composition and Micro Morphology of Golden Laminae in the Wall Painting “La Maestà” by Simone Martini: A Study by Optical Microscopy, XRD, FESEM-EDS and ToF-SIMS. Appl. Sci. 2019, 9, 3452. [Google Scholar] [CrossRef]
- Legrand, S.; Van der Snickt, G.; Cagno, S.; Caen, J.; Janssens, K. MA-XRF Imaging as a Tool to Characterize the 16th Century Heraldic Stained-Glass Panels in Ghent Saint Bavo Cathedral. J. Cult. Herit. 2019, 40, 163–168. [Google Scholar] [CrossRef]
- Bernady, E.; Goryl, M.; Walczak, M. XRF Imaging (MA-XRF) as a Valuable Method in the Analysis of Nonhomogeneous Structures of Grisaille Paint Layers. Heritage 2021, 4, 3193–3207. [Google Scholar] [CrossRef]
- Van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K. Chemical Imaging of Stained-Glass Windows by Means of Macro X-Ray Fluorescence (MA-XRF) Scanning. Microchem. J. 2016, 124, 615–622. [Google Scholar] [CrossRef]
- Capobianco, N.; Hunault, M.O.J.Y.; Balcon-Berry, S.; Galoisy, L.; Sandron, D.; Calas, G. The Grande Rose of the Reims Cathedral: An Eight-Century Perspective on the Colour Management of Medieval Stained Glass. Sci. Rep. 2019, 9, 3287. [Google Scholar] [CrossRef] [PubMed]
- Hunault, M.O.J.Y.; Bauchau, F.; Boulanger, K.; Hérold, M.; Calas, G.; Lemasson, Q.; Pichon, L.; Pacheco, C.; Loisel, C. Thirteenth-Century Stained Glass Windows of the Sainte-Chapelle in Paris: An Insight into Medieval Glazing Work Practices. J. Archaeol. Sci. Rep. 2021, 35, 102753. [Google Scholar] [CrossRef]
- Palomar, T.; Grazia, C.; Pombo Cardoso, I.; Vilarigues, M.; Miliani, C.; Romani, A. Analysis of Chromophores in Stained-Glass Windows Using Visible Hyperspectral Imaging in-Situ. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117378. [Google Scholar] [CrossRef]
- Rahrig, M.; Torge, M. 3D Inspection of the Restoration and Conservation of Stained Glass Windows Using High Resolution Structured Light Scanning. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society of Photogrammetry and Remote Sensing (ISPRS): Hanover, Germany, 2019; Volume 42, pp. 965–972. [Google Scholar]
- Targowski, P.; Góra, M.; Wojtkowski, M. Optical Coherence Tomography for Artwork Diagnostics. Laser Chem. 2007, 2006, 35373. [Google Scholar] [CrossRef][Green Version]
- Liang, H.; Cid, M.G.; Cucu, R.G.; Dobre, G.M.; Podoleanu, A.G.; Pedro, J.; Saunders, D. En-Face Optical Coherence Tomography—A Novel Application of Non-Invasive Imaging to Art Conservation. Opt. Express 2005, 13, 6133. [Google Scholar] [CrossRef] [PubMed]
- Filippidis, G.; Massaouti, M.; Selimis, A.; Gualda, E.J.; Manceau, J.M.; Tzortzakis, S. Nonlinear Imagig and THz Diagnostic Tools in the Service of Cultural Heritage. Appl. Phys. A Mater. Sci. Process. 2012, 106, 257–263. [Google Scholar] [CrossRef]
- Anglos, D. Laser-Induced Breakdown Spectroscopy in Art and Archaeology. Appl. Spectrosc. 2001, 55, 186A–205A. [Google Scholar] [CrossRef]
- Anglos, D.; Detalle, V. Cultural Heritage Applications of LIBS. In Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2014; Volume 182, pp. 531–554. ISBN 9783642450846. [Google Scholar]
- Nevin, A.; Spoto, G.; Anglos, D. Laser Spectroscopies for Elemental and Molecular Analysis in Art and Archaeology. Appl. Phys. A Mater. Sci. Process. 2012, 106, 339–361. [Google Scholar] [CrossRef]
- Tognoni, E.; Palleschi, V.; Corsi, M.; Cristoforetti, G. Quantitative Micro-Analysis by Laser-Induced Breakdown Spectroscopy: A Review of the Experimental Approaches. Spectrochim. Acta-Part B At. Spectrosc. 2002, 57, 1115–1130. [Google Scholar] [CrossRef]
- Melessanaki, K.; Mateo, M.; Ferrence, S.C.; Betancourt, P.P.; Anglos, D. The Application of LIBS for the Analysis of Archaeological Ceramic and Metal Artifacts. Appl. Surf. Sci. 2002, 197–198, 156–163. [Google Scholar] [CrossRef]
- Giakoumaki, A.; Melessanaki, K.; Anglos, D. Laser-Induced Breakdown Spectroscopy (LIBS) in Archaeological Science-Applications and Prospects. Anal. Bioanal. Chem. 2007, 387, 749–760. [Google Scholar] [CrossRef]
- Oujja, M.; Sanz, M.; Agua, F.; Conde, J.F.; García-Heras, M.; Dávila, A.; Oñate, P.; Sanguino, J.; Vázquez De Aldana, J.R.; Moreno, P.; et al. Multianalytical Characterization of Late Roman Glasses Including Nanosecond and Femtosecond Laser Induced Breakdown Spectroscopy. J. Anal. At. Spectrom. 2015, 30, 1590–1599. [Google Scholar] [CrossRef]
- Martínez-Hernández, A.; Oujja, M.; Sanz, M.; Carrasco, E.; Detalle, V.; Castillejo, M. Analysis of Heritage Stones and Model Wall Paintings by Pulsed Laser Excitation of Raman, Laser-Induced Fluorescence and Laser-Induced Breakdown Spectroscopy Signals with a Hybrid System. J. Cult. Herit. 2018, 32, 1–8. [Google Scholar] [CrossRef]
- Bai, X.; Syvilay, D.; Wilkie-Chancellier, N.; Texier, A.; Martinez, L.; Serfaty, S.; Martos-Levif, D.; Detalle, V. Influence of Ns-Laser Wavelength in Laser-Induced Breakdown Spectroscopy for Discrimination of Painting Techniques. Spectrochim. Acta—Part B At. Spectrosc. 2017, 134, 81–90. [Google Scholar] [CrossRef][Green Version]
- Muller, K.; Stege, H. Evaluation of the Analytical Potential of Laser-Induced Breakdown Spectrometry (LIBS) for the Analysis of Historical Glasses. Archaeometry 2003, 45, 421–433. [Google Scholar] [CrossRef]
- Carmona, N.; Oujja, M.; Gaspard, S.; García-Heras, M.; Villegas, M.A.; Castillejo, M. Lead Determination in Glasses by Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta—Part B At. Spectrosc. 2007, 62, 94–100. [Google Scholar] [CrossRef]
- Carmona, N.; Oujja, M.; Rebollar, E.; Römich, H.; Castillejo, M. Analysis of Corroded Glasses by Laser Induced Breakdown Spectroscopy. Spectrochim. Acta—Part B At. Spectrosc. 2005, 60, 1155–1162. [Google Scholar] [CrossRef]
- Palomar, T.; Oujja, M.; García-Heras, M.; Villegas, M.A.; Castillejo, M. Laser Induced Breakdown Spectroscopy for Analysis and Characterization of Degradation Pathologies of Roman Glasses. Spectrochim. Acta—Part B At. Spectrosc. 2013, 87, 114–120. [Google Scholar] [CrossRef]
- Klein, S.; Stratoudaki, T.; Zafiropulos, V.; Hildenhagen, J.; Dickmann, K.; Lehmkuhl, T. Laser-Induced Breakdown Spectroscopy for on-Line Control of Laser Cleaning of Sandstone and Stained Glass. Appl. Phys. A Mater. Sci. Process. 1999, 69, 441–444. [Google Scholar] [CrossRef]
- Gerhard, C.; Hermann, J.; Mercadier, L.; Loewenthal, L.; Axente, E.; Luculescu, C.R.; Sarnet, T.; Sentis, M.; Viöl, W. Quantitative Analyses of Glass via Laser-Induced Breakdown Spectroscopy in Argon. Spectrochim. Acta—Part B At. Spectrosc. 2014, 101, 32–45. [Google Scholar] [CrossRef]
- Oujja, M.; Palomar, T.; Martínez-Weinbaum, M.; Martínez-Ramírez, S.; Castillejo, M. Characterization of Medieval-like Glass Alteration Layers by Laser Spectroscopy and Nonlinear Optical Microscopy. Eur. Phys. J. Plus 2021, 136, 859. [Google Scholar] [CrossRef]
- Oujja, M.; Agua, F.; Sanz, M.; Morales-Martin, D.; García-Heras, M.; Villegas, M.A.; Castillejo, M. Multiphoton Excitation Fluorescence Microscopy and Spectroscopic Multianalytical Approach for Characterization of Historical Glass Grisailles. Talanta 2021, 230, 122314. [Google Scholar] [CrossRef]
- Romani, A.; Clementi, C.; Miliani, C.; Favaro, G. Fluorescence Spectroscopy: A Powerful Technique for the Noninvasive Characterization of Artwork. Acc. Chem. Res. 2010, 43, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Fournier, J.; Néauport, J.; Grua, P.; Jubera, V.; Fargin, E.; Talaga, D.; Jouannigot, S. Luminescence Study of Defects in Silica Glasses under Near-UV Excitation. Phys. Procedia 2010, 8, 39–43. [Google Scholar] [CrossRef][Green Version]
- Reisfeld, R. Inorganic Ions in Glasses and Polycrystalline Pellets as Fluorescence Standard Reference Materials. J. Res. Notionol Bureou Stondords A Phys. Chem. 1972, 76, 613–635. [Google Scholar] [CrossRef]
- Skuja, L. Optically Active Oxygen-Deficiency-Related Centers in Amorphous Silicon Dioxide. J. Non. Cryst. Solids 1998, 239, 16–48. [Google Scholar] [CrossRef]
- Fernández Navarro, J.M. El Vidrio, 3rd ed.; Consejo Superior de Investigaciones Científicas; Madrid, Spain; Sociedad Española de Cerámica y Vidrio: Madrid, Spain, 2003; ISBN 8400081587. [Google Scholar]
- Palomar, T.; Enríquez, E. Evaluation of the Interaction of Solar Radiation with Colored Glasses and Its Thermal Behavior. J. Non. Cryst. Solids 2022, 579, 121376. [Google Scholar] [CrossRef]
- NIST Atomic Spectra Database. Available online: http://physics.nist.gov/asd (accessed on 15 January 2022).
- Stevens-Kalceff, M.A. Cathodoluminescence Microcharacterization of Point Defects in α-Quartz. Mineral. Mag. 2009, 73, 585–605. [Google Scholar] [CrossRef]
- Chen, H.; Peng, J.; Yu, L.; Chen, H.; Sun, M.; Sun, Z.; Ni, R.; Alamry, K.A.; Marwani, H.M.; Wang, S. Calcium Ions Turn on the Fluorescence of Oxytetracycline for Sensitive and Selective Detection. J. Fluoresc. 2020, 30, 463–470. [Google Scholar] [CrossRef] [PubMed]
Sample | Thickness (µm) | ||
---|---|---|---|
OM | FESEM | Linear FESEM-EDS Analyses | |
Pink1 | 137 ± 1 | 147 ± 1 | - |
Pink2 | 127 ± 1 | - | 106–206 |
Brown1 | 331 ± 2 | 334 ± 2 | - |
Brown2 | 351 ± 1 | - | 306–403 |
Blue1 | 675 ± 1 | 652–747 | |
Blue2 | 173 ± 2 | - | 176–226 |
Blue3 | 386 ± 2 | - | 373–391 |
Black | 175 ± 1 | 177 ± 2 | - |
Green1 | 193 ± 2 | 195 ± 1 | - |
Green2 | 352 ± 1 | - | 235–314 |
Green3 | 175 ± 1 | 180 ± 2 | - |
Na2O | MgO | SiO2 | K2O | CaO | TiO2 | Cr2O3 | MnO | Fe2O3 | CoO | NiO | CuO | ZnO | BaO | PbO | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pink1 | CL | 0.9 | - | 29.1 | 5.5 | - | - | - | - | - | - | - | - | - | 3.7 | 60.8 |
BG | 14.5 | - | 71.3 | 1.1 | 13.1 | - | - | - | - | - | - | - | - | - | - | |
Pink2 | CL | 10.7 | - | 71.6 | 5.1 | 11.5 | - | - | - | - | - | - | 1.0 | - | - | - |
BG | 15.0 | - | 69.6 | 1.4 | 14.0 | - | - | - | - | - | - | - | - | - | - | |
Brown1 | CL | 8.7 | - | 48.9 | 2.3 | 9.3 | - | 16.7 | - | 14.1 | - | - | - | - | - | - |
BG | 15.3 | - | 70.4 | 0.8 | 13.5 | - | - | - | - | - | - | - | - | - | - | |
Brown2 | CL | 11.8 | - | 72.4 | 5.4 | 9.7 | - | - | - | - | - | - | 0.7 | - | - | - |
BG | 15.3 | 0.8 | 70.4 | 0.7 | 12.6 | - | - | - | - | - | - | - | - | - | - | |
Blue1 | CL | 14.9 | - | 70.7 | 1.6 | 10.9 | - | - | - | - | - | - | 1.9 | - | - | - |
BG | 17.0 | - | 70.3 | 1.2 | 11.5 | - | - | - | - | - | - | - | - | - | - | |
Blue2 | CL | 15.0 | 0.6 | 69.8 | 2.1 | 10.6 | - | - | - | - | 1.8 | - | - | - | - | - |
BG | 17.6 | 0.6 | 70.4 | 0.6 | 10.8 | - | - | - | - | - | - | - | - | - | - | |
Blue3 | CL | 16.6 | 1.2 | 64.3 | 1.1 | 8.9 | - | - | - | - | 6.7 | - | - | 1.1 | - | - |
BG | 19.0 | 1.6 | 69.0 | 0.4 | 9.9 | - | - | - | - | - | - | - | - | - | - | |
Black | CL | 12.9 | 0.6 | 60.0 | 1.6 | 8.9 | - | - | 12.8 | - | 1.2 | 1.9 | - | - | - | - |
BG | 17.1 | - | 71.9 | 0.5 | 10.5 | - | - | - | - | - | - | - | - | - | - | |
Green1 | CL | 2.5 | - | 46.6 | 9.4 | - | 4.4 | 1.5 | - | - | - | - | - | - | - | 35.6 |
BG | 18.3 | 1.8 | 70.4 | - | 9.5 | - | - | - | - | - | - | - | - | - | - | |
Green2 | CL | 11.7 | 1.2 | 55.5 | 0.4 | 6.6 | - | - | - | 6.3 | - | - | 6.7 | - | 11.5 | - |
BG | 16.7 | 1.4 | 63.1 | 0.4 | 9.1 | - | - | - | - | - | - | - | - | 9.3 | - | |
Green3 | CL | 2.3 | - | 44.4 | 10.5 | - | - | 1.4 | - | - | - | - | 3.9 | - | - | 37.4 |
BG | 19.3 | 1.9 | 68.2 | 0.4 | 10.2 | - | - | - | - | - | - | - | - | - | - |
Samples | Elemental Composition as Determined by LIBS | |
---|---|---|
Pink1 | CL | Si, B, Mn, Fe, Pb, Al, Ca, K, Ba, Sr, Ti, Na |
BG | Si, Mg, Al, Ca, Na, K, Ba, Sr, Ti | |
Pink2 | CL | Si, B, Mg, Sn, Al, Ca, Cu, Na, K, Fe, Ti |
BG | Si, Mg, Al, Ca, Na, K, Ba, Sr, Ti | |
Brown1 | CL | Si, B, Fe, Mn, Mg, Ca, Al, Cr, K, Ba, Sr, Ti, Na |
BG | Si, Mg, Al, Ca, Na, K, Ba, Sr, Ti | |
Brown2 | CL | Si, B, Fe, Mg, Ca, Al, Cu, Na, K, Ti |
BG | Si, Mg, Al, Ca, Na, K, Ba, Ti | |
Blue1 | CL | Si, B, Mg, Ca, Al, Cu, Na, Fe, K, Ba, Ti |
BG | Si, Mg, Al, Ca, Na, Fe, K, Ba, Ti | |
Blue2 | CL | Si, B, Mg, Ca, Al, Cu, Na, Co, K, Ba, Ti |
BG | Si, Mg, Al, Ca, Na, K, Ba, Ti | |
Blue3 | CL | Si, B, Co, Mg, Ca, Al, Cu, Na, Ba, Ti, Zn |
BG | Si, Mg, Al, Ca, Na, Ba, Ti | |
Black | CL | Si, Mg, Fe, Mn, Ca, Al, Ni, Na, Co, K, Ba, Cr, Sr, Ti |
BG | Si, Mg, Al, Ca, Na, K, Ti | |
Green1 | CL | Si, B, Mg, Mn, Ca, Al, Pb, Cr, Ti, Cu, Co, K, Na |
BG | Si, Mg, Al, Ca, Na, K, Ti | |
Green2 | CL | Si, B, Fe, Cr, Mg, Al, Ca, Cu, Co, K, Ba, Sr, Na |
BG | Si, Mg, Al, Ca, Na, Ba, Sr, Ti | |
Green3 | CL | Si, B, Mn, Cr, Mg, Pb, Al, Ca, Cu, Co, Ba, Na |
BG | Si, Mg, Al, Ca, Na, Ti |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomar, T.; Martínez-Weinbaum, M.; Aparicio, M.; Maestro-Guijarro, L.; Castillejo, M.; Oujja, M. Spectroscopic and Microscopic Characterization of Flashed Glasses from Stained Glass Windows. Appl. Sci. 2022, 12, 5760. https://doi.org/10.3390/app12115760
Palomar T, Martínez-Weinbaum M, Aparicio M, Maestro-Guijarro L, Castillejo M, Oujja M. Spectroscopic and Microscopic Characterization of Flashed Glasses from Stained Glass Windows. Applied Sciences. 2022; 12(11):5760. https://doi.org/10.3390/app12115760
Chicago/Turabian StylePalomar, Teresa, Marina Martínez-Weinbaum, Mario Aparicio, Laura Maestro-Guijarro, Marta Castillejo, and Mohamed Oujja. 2022. "Spectroscopic and Microscopic Characterization of Flashed Glasses from Stained Glass Windows" Applied Sciences 12, no. 11: 5760. https://doi.org/10.3390/app12115760
APA StylePalomar, T., Martínez-Weinbaum, M., Aparicio, M., Maestro-Guijarro, L., Castillejo, M., & Oujja, M. (2022). Spectroscopic and Microscopic Characterization of Flashed Glasses from Stained Glass Windows. Applied Sciences, 12(11), 5760. https://doi.org/10.3390/app12115760