Quasi-CW Pumping of a Single-Frequency Fiber Amplifier for Efficient SHG in PPLN Crystals with Reduced Thermal Load
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results
3.1. High-Power Laser Diode Driver Performance in CW and QCW Modes
3.2. Optimisation of the Yb-Doped Fiber Amplifier Output Power
3.3. Second-Harmonic Generation Using an Efficient Nonlinear Crystal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.K.; Misra, A.K.; Lucey, P.G.; Lentz, R.C. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.C.A.; Cantu, L.M.L.; Duschek, F. RDX remote Raman detection on NATO SET-237 samples. Eur. Phys. J. Plus 2021, 136, 1–11. [Google Scholar] [CrossRef]
- Tuschel, D. Selecting an Excitation Wavelength for Raman Spectroscopy. Spectroscopy 2016, 31, 14–23. Available online: https://www.spectroscopyonline.com/view/selecting-excitation-wavelength-raman-spectroscopy (accessed on 1 March 2016).
- Balliu, E.; Engholm, M.; Nilson, H.-E. A compact, single-frequency, high-power, SBS-free, Yb-doped single-stage fiber amplifier. In Solid State Lasers XXVIII: Technology and Devices; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 10896, p. 1089618. [Google Scholar] [CrossRef]
- Zervas, M.N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers. Opt. Express 2019, 27, 19019–19041. [Google Scholar] [CrossRef]
- Balliu, E.; Engholm, M.; Digonnet, M.J.F.; Coetzee, R.S.; Elgcrona, G.; Nilsson, H.-E. Compact Single-Frequency MOPA Using a Silica Fiber Highly Doped with Yb3+. Appl. Sci. 2021, 11, 9951. [Google Scholar] [CrossRef]
- Agrawal, G. Nonlinear Fiber Optics, 5th ed.; Elsevier: Waltham, MA, USA, 2013; pp. 355–384. [Google Scholar]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Elsevier: San Diego, CA, USA, 2008; pp. 429–471. [Google Scholar]
- Miller, G.D.; Batchko, R.G.; Tulloch, W.M.; Weise, D.R.; Fejer, M.M.; Byer, R.L. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobite. Opt. Lett. 1997, 22, 1834–1836. [Google Scholar] [CrossRef]
- Kumar, S.C.; Samanta, G.K.; Devi, K.; Ebrahim-Zadeh, M. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation. Opt. Express 2011, 19, 11152–11169. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Chen, F.; Pan, Q.; Yu, D.; He, Y. Theoretical study on thermal characteristic of MgO:PPLN crystal in high power optical parametric oscillator. Optik 2019, 178, 190–196. [Google Scholar] [CrossRef]
- Furuya, H.; Morikawa, A.; Mizuuchi, K.; Yamamoto, K. High-Beam-Quality Continuous Wave 3 W Green-Light Genera-tion in Bulk Periodically Poled MgO:LiNbO3. Jpn. J. Appl. Phys. 2006, 45, 6704–6707. [Google Scholar] [CrossRef]
- Lai, J.-Y.; Hsu, C.-S.; Hsu, C.-W.; Wu, D.-Y.; Wu, K.; Chou, M.-H. Single pass 7 watts continuous wave 532 nm generation by focusing optimized second harmonic generation in MgO:PPLN. Proc. SPIE 2019, 10902, 1090205. [Google Scholar]
- Mizushima, T.; Furuya, H.; Shikii, S.; Kusukame, K.; Mizuuchi, K.; Yamamoto, K. Second Harmonic Generation with High Conversion Efficiency and Wide Temperature Tolerance by Multi-Pass Scheme. Appl. Phys. Express 2008, 1, 1. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, L.; Jiang, H.; Cui, S.; Zhou, J.; Feng, Y. 2 W single-frequency, low-noise 509 nm laser via single-pass fre-quency doubling of an ECDL-seeded Yb fiber amplifier. Appl. Opt. 2018, 57, 8733–8737. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, S.; Brunel, M.; Cheng, L.; Zhao, C.; Zhang, H. Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal. Appl. Opt. 2017, 56, 2968–2972. [Google Scholar] [CrossRef]
- Rota-Rodrigo, S.; Gouhier, B.; Dixneuf, C.; Antoni-Micollier, L.; Guiraud, G.; Leandro, D.; Lopez-Amo, M.; Traynor, N.; Santarelli, G. Watt-level green random laser at 532 nm by SHG of a Yb-doped fiber laser. Opt. Lett. 2018, 43, 4284–4287. [Google Scholar] [CrossRef]
- Furukawa, Y.; Kitamura, K.; Alexandrovski, A.; Route, R.K.; Fejer, M.M.; Foulon, G. Green-induced infrared absorption in MgO doped LiNbO3. Appl. Phys. Lett. 2001, 78, 1970–1972. [Google Scholar] [CrossRef]
- Ould-Hamouda, A.; Tokoro, H.; Ohkoshi, S.-I.; Freysz, E. Single-shot time resolved study of the photo-reversible phase transi-tion induced in flakes of Ti3O5 nanoparticles at room temperature. Chem. Phys. Lett. 2014, 608, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Lutey, A.H.A.; Ascari, A.; Fortunato, A.; Romoli, L. Long-pulse quasi-CW laser cutting of metals. Int. J. Adv. Manuf. Technol. 2017, 94, 155–162. [Google Scholar] [CrossRef]
- Sonnenfroh, D.M.; Rawlins, W.T.; Allen, M.G.; Gmachl, C.; Capasso, F.; Hutchinson, A.L.; Sivco, D.L.; Baillargeon, J.N.; Cho, A.Y. Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quan-tum-cascade lasers. Appl. Opt. 2001, 40, 812–820. [Google Scholar] [CrossRef]
- Mehner, E.; Steinmann, A.; Hegenbarth, R.; Braun, B.; Giessen, H. Stable MHz-Repetition-Rate Passively Q-Switched Microchip Laser Frequency Doubled by MgO:PPLN. Appl. Phys. B 2012, 112, 231–239. [Google Scholar] [CrossRef]
- Zhao, H.; Sukhoy, K.; Lima, I.T., Jr.; Major, A. Generation of green second harmonic with 60% conversion efficiency from a Q-switched microchip laser in MgO:PPLN crystal. Laser Phys. Lett. 2012, 9, 355–358. [Google Scholar] [CrossRef]
- Avdokhin, A.; Gapontsev, V.; Kadwani, P.; Vaupel, A.; Samartsev, I.; Platonov, N.; Yusim, A.; Myasnikov, D. High Average Power Quasi-CW Single-Mode Green and UV Fiber Lasers. In Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9347, p. 934704. [Google Scholar] [CrossRef]
- Suzudo, T.; Satoh, Y.; Hiroi, M.; Mifune, H.; Sato, Y.; Ishizuki, H.; Taira, T.; Nakamura, O.; Watanabe, S.; Furukawa, Y. Diode-pumped Nd:GdVO4 Microchip Laser with a Single-Pass Green Generation in PPMgLN. In Advanced Solid-State Photonics; Optical Society of America: Washington, DC, USA, 2007; Paper TuC3. [Google Scholar]
- Kontur, F.; Dajani, I.; Lu, Y.; Knize, R.J. Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN. Opt. Express 2007, 15, 12882–12889. [Google Scholar] [CrossRef]
- Fejer, M.; Magel, G.; Jundt, D.; Byer, R. Quasi-phase-matched second harmonic generation: Tuning and tolerances. IEEE J. Quantum Electron. 1992, 28, 2631–2654. [Google Scholar] [CrossRef] [Green Version]
- Gayer, O.; Sacks, Z.; Galunand, E.; Arie, A. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B 2008, 91, 343–348. [Google Scholar] [CrossRef]
- Boyd, G.D.; Kleinman, D.A. Parametric interaction of focused Gaussian light beams. J. Appl. Phys. 1968, 39, 3597–3639. [Google Scholar] [CrossRef]
Reference | Fundamental Power (W) | Pulse Energy at 1064 nm | Output Power at 532 nm (W) | Peak Power at 532 nm (W) | Conversion Efficiency (%) | Crystal Length (mm) | Configuration | Operation Mode |
---|---|---|---|---|---|---|---|---|
[14] | 25 | - | 7.5 | - | 30 | 25 | single-pass | CW |
[15] | 7.6 | - | 5 | - | 66 | - | multi-pass | CW |
[18] | 20 | - | 1.1 | - | 9 | 10 | single-pass | CW |
[23] | 0.2 | - | 0.135 | - | 68 | 10 | single-pass | pulsed |
[24] | 0.069 | 10 | 0.04 | - | 60 | 5 | single-pass | Pulsed |
[26] | - | - | - | 8.8 | 34 | 20 | single-pass | QCW |
This work | 0.428 | 4280 | 0.067 | 6.7 | 20 | 10 | single-pass | QCW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balliu, E.; Engholm, M.; Digonnet, M.J.F.; Nilsson, H.-E. Quasi-CW Pumping of a Single-Frequency Fiber Amplifier for Efficient SHG in PPLN Crystals with Reduced Thermal Load. Appl. Sci. 2022, 12, 285. https://doi.org/10.3390/app12010285
Balliu E, Engholm M, Digonnet MJF, Nilsson H-E. Quasi-CW Pumping of a Single-Frequency Fiber Amplifier for Efficient SHG in PPLN Crystals with Reduced Thermal Load. Applied Sciences. 2022; 12(1):285. https://doi.org/10.3390/app12010285
Chicago/Turabian StyleBalliu, Enkeleda, Magnus Engholm, Michel J. F. Digonnet, and Hans-Erik Nilsson. 2022. "Quasi-CW Pumping of a Single-Frequency Fiber Amplifier for Efficient SHG in PPLN Crystals with Reduced Thermal Load" Applied Sciences 12, no. 1: 285. https://doi.org/10.3390/app12010285
APA StyleBalliu, E., Engholm, M., Digonnet, M. J. F., & Nilsson, H.-E. (2022). Quasi-CW Pumping of a Single-Frequency Fiber Amplifier for Efficient SHG in PPLN Crystals with Reduced Thermal Load. Applied Sciences, 12(1), 285. https://doi.org/10.3390/app12010285