Post-Test Numerical Analysis of a Helium-Cooled Breeding Blanket First Wall under LOFA Conditions with the MELCOR Fusion Code
Abstract
:1. Introduction
- The hydrodynamic model implemented in MELCOR;
- The capability to reproduce heat transfer phenomena among adjacent heat structures;
- The fluid-wall heat transfer.
2. Materials and Methods
2.1. The Mock-Up
2.2. HELOKA-HP Facility
2.3. Pressure Drop Characterization Tests
2.4. LOFA Tests
2.5. Basic of the Best-Estimate Methodology
2.6. MELCOR Models
2.6.1. Single-Channel Model
2.6.2. Complete Model
- The inlet pipes spanning from the inlet temperature/pressure sensors up to the Swagelok connecting them with the FWMU nozzles;
- The outlet pipes from the FWMU nozzles up to the two outlet headers (one for Channels 1–5, and the other for Channels 6–10;
- The outlet headers up to the position of the flow meters.
3. Results
3.1. Pressure Drop Characterization Tests
- The loss coefficient in the junction connecting the vertical nozzle to the FWMU channel ();
- The loss coefficient in the 180° bend ();
- The loss coefficient in the junction connecting the FWMU channel to the horizontal nozzle ();
- The surface roughness ().
3.2. Pre-Calibrations
- the first one considering the thermal–hydraulic conditions characterizing the steady-state at both 300 and 330 kW/m2, without applying any heat load;
- the second one considering the thermal–hydraulic conditions characterizing the steady-state at both 300 and 330 kW/m2, with the application of the heat load hitting the portion of the top plate.
- Material properties: conductivity, specific heat, and density of the P92 steel;
- Conduction-related parameters: thickness of the heat structures under heat load, exchange areas among HSs, and characteristic length of all the HSs composing the top plate;
- Convection-related parameters: sensitivity coefficients linked to the Dittus–Boelter formulation embedded.
3.3. LOFA Tests with a Sensitivity Matrix Coming from the Pre-Calibrations
- Six cases for the heat load of 300 kW/m2: 0% valve open (full LOFA), 5%, 10%, 20%, 40%, and 60%;
- Five cases for the heat load of 330 kW/m2: 0% valve open, 5%, 10%, 20%, and 40%.
- C1.
- LOFAs not approaching the 550 °C limit (40% and 60% valve open). Damages on the surface under heat load may arise if this temperature is exceeded, so 550 °C is used as a safety limit;
- C2.
- LOFAs approaching the 550 °C limit, but without showing symptoms of back-flows (5%, 10%, and 20% valve open);
- C3.
- LOFAs approaching the 550 °C limit and showing signs of back-flows (0% valve open).
- The pressure drop coefficients in reverse direction were not re-calibrated while analyzing the steady-state at 300 and 330 kW/m2 (both with and without heat load) since no experimental data are available;
- The inlet coolant pressure and temperature are available only for few channels.
3.4. Full LOFA Scenario at 300 kW/m2 with Calculated Sensitivities
- Too-small uncertainty ranges for the outlet coolant temperatures;
- The lack of back-flows in C3 scenarios.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Federici, G.; Bachmann, C.; Barucca, L.; Biel, W.; Boccaccini, L.; Brown, R.; Bustreo, C.; Ciattaglia, S.; Cismondi, F.; Coleman, M.; et al. DEMO design activity in Europe: Progress and updates. Fusion Eng. Des. 2018, 136, 729–741. [Google Scholar] [CrossRef]
- Hernandez, F.; Pereslavtsev, P.; Zhou, G.; Kang, Q.; D’Amico, S.; Neuberger, H.; Boccaccini, L.V.; Kiss, B.; Nádasi, G.; Maqueda, L.; et al. Consolidated design of the HCPB Breeding Blanket for the pre-Conceptual Design Phase of the EU DEMO and harmonization with the ITER HCPB TBM program. Fusion Eng. Des. 2020, 157, 111614. [Google Scholar] [CrossRef]
- Zeile, C.; Abou-Sena, A.; Boccaccini, L.V.; Ghidersa, B.-E.; Kang, Q.; Kunze, A.; Lamberti, L.; Maione, I.A.; Rey, J.; von der Weth, A. Conceptual design of a First Wall Mock-Up experiment in preparation for the qualification of breeding blanket technologies in the Helium Loop Karlsruhe (HELOKA) facility. Fusion Eng. Des. 2016, 109–111, 1335–1339. [Google Scholar] [CrossRef]
- Ghidersa, B.-E.; Gonfiotti, B.; Kunze, A.; Di Marcello, V.; Ionescu-Bujor, M.; Jin, X.Z.; Stieglitz, R. Experimental investigation of a Helium-cooled Breeding Blanket First Wall under LOFA conditions and pre-test and post-test numerical analysis. Appl. Sci. 2021, 11, 12010. [Google Scholar] [CrossRef]
- Neuberger, H.; Rey, J.; Von Der Weth, A.; Hernandez, F.; Martin, T.; Zmitko, M.; Felde, A.; Niewöhner, R.; Krüger, F. Overview on ITER and DEMO blanket fabrication activities of the KIT INR and related frameworks. Fusion Eng. Des. 2015, 96, 315–318. [Google Scholar] [CrossRef]
- Jin, X.Z. Preliminary Accident Analysis of Ex-Vessel LOCA for the European DEMO HCPB Blanket Concept. Fusion Sci. Technol. 2021, 5, 391–402. [Google Scholar] [CrossRef]
- Cacuci, D.G.; Ionescu-Bujor, M. Best-Estimate Model Calibration and Prediction through Experimental Data Assimilation—I: Mathematical Framework. Nucl. Sci. Eng. 2010, 165, 18–44. [Google Scholar] [CrossRef]
- Gonfiotti, B.; Angelucci, M.; Ghidersa, B.-E.; Jin, X.Z.; Ionescu-Bujor, M.; Paci, S.; Stieglitz, R. Best-Estimate for System Codes (BeSYC): A new soft-ware to perform Best-Estimate Plus Uncertainty analyses with thermal-hydraulic and safety system codes. Appl. Sci. 2022, 12, 311. [Google Scholar] [CrossRef]
- Ghidersa, B.E.; Marchese, V.; Ionescu-Bujor, M.; Ihli, T.H. HELOKA facility: Thermo-hydrodynamic model and control. Fusion Eng. Des. 2008, 10–12, 1792–1796. [Google Scholar] [CrossRef]
- Abou-Sena, A.; Boccaccini, L.V.; Ghidersa, B.E.; Zinn, K. Characterization of the cooling channels of First Wall Mock-Up dedicated to the HCPB TBM qualification. Fusion Eng. Des. 2017, 124, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Ionescu-Bujor, M.; Cacuci, D.G. A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems I: Deterministic Methods. Nucl. Sci. Eng. 2004, 147, 189–203. [Google Scholar] [CrossRef]
Ch. | Horizontal Inlet | Vertical Inlet | |||||
---|---|---|---|---|---|---|---|
(μm) | |||||||
1 | 1.45 ± 0.24 | 0.71 ± 0.16 | 1.60 ± 0.40 | 1.69 ± 0.24 | 0.50 ± 0.12 | 1.60 ± 0.40 | 1.70 ± 0.17 |
2 | 1.06 ± 0.19 | 0.62 ± 0.14 | 1.53 ± 0.38 | 1.15 ± 0.18 | 0.41 ± 0.10 | 1.53 ± 0.38 | 1.70 ± 0.17 |
3 | 0.99 ± 0.18 | 0.60 ± 0.14 | 1.52 ± 0.38 | 1.01 ± 0.17 | 0.39 ± 0.10 | 1.51 ± 0.38 | 1.70 ± 0.17 |
4 | 0.88 ± 0.18 | 0.56 ± 0.14 | 1.50 ± 0.38 | 0.80 ± 0.17 | 0.36 ± 0.10 | 1.49 ± 0.38 | 1.70 ± 0.17 |
5 | 0.93 ± 0.18 | 0.58 ± 0.14 | 1.51 ± 0.38 | 1.11 ± 0.18 | 0.40 ± 0.10 | 1.52 ± 0.38 | 1.70 ± 0.17 |
6 | 0.89 ± 0.18 | 0.56 ± 0.14 | 1.51 ± 0.38 | 0.93 ± 0.17 | 0.38 ± 0.10 | 1.50 ± 0.38 | 1.70 ± 0.17 |
7 | 0.97 ± 0.18 | 0.59 ± 0.14 | 1.52 ± 0.38 | 0.94 ± 0.17 | 0.38 ± 0.10 | 1.50 ± 0.38 | 1.70 ± 0.17 |
8 | 0.85 ± 0.18 | 0.55 ± 0.14 | 1.50 ± 0.38 | 0.78 ± 0.16 | 0.36 ± 0.10 | 1.48 ± 0.38 | 1.70 ± 0.17 |
9 | 0.87 ± 0.18 | 0.55 ± 0.14 | 1.50 ± 0.38 | 0.86 ± 0.17 | 0.37 ± 0.10 | 1.49 ± 0.38 | 1.70 ± 0.17 |
10 | 0.88 ± 0.18 | 0.56 ± 0.14 | 1.50 ± 0.38 | 0.86 ± 0.17 | 0.37 ± 0.10 | 1.49 ± 0.38 | 1.70 ± 0.17 |
Responses | Experimental Results | Best-Estimated Results |
---|---|---|
330 kW/m2—No heat load | ||
Δp—Ch. 2 (MPa) | 7.70 ± 0.015 | 7.67 ± 7.6 × 103 |
Δp—Ch. 3 (MPa) | 7.69 ± 0.015 | 7.67 ± 7.5 × 10−3 |
Δp—Ch. 4 (MPa) | 7.7 ± 0.015 | 7.67 ± 7.7 × 10−3 |
Δp—Ch. 7 (MPa) | 7.72 ± 0.015 | 7.71 ± 8.2 × 10−3 |
Δp—Ch. 8 (MPa) | 7.71 ± 0.015 | 7.71 ± 8.2 × 10−3 |
Δp—Ch. 9 (MPa) | 7.72 ± 0.015 | 7.71 ± 8.2 × 10−3 |
330 kW/m2—No heat load | ||
Outlet T.—Ch. 2 (°C) | 302.5 ± 1.5 | 300.2 ± 0.2 |
Outlet T.—Ch. 3 (°C) | 324.2 ± 1.6 | 320.6 ± 0.4 |
Outlet T.—Ch. 4 (°C) | 321.1 ± 1.6 | 315.6 ± 0.3 |
Outlet T.—Ch. 7 (°C) | 323.5 ± 1.6 | 319.6 ± 0.3 |
Outlet T.—Ch. 8 (°C) | 305.4 ± 1.5 | 301.7 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelucci, M.; Gonfiotti, B.; Ghidersa, B.-E.; Jin, X.Z.; Ionescu-Bujor, M.; Paci, S.; Stieglitz, R. Post-Test Numerical Analysis of a Helium-Cooled Breeding Blanket First Wall under LOFA Conditions with the MELCOR Fusion Code. Appl. Sci. 2022, 12, 187. https://doi.org/10.3390/app12010187
Angelucci M, Gonfiotti B, Ghidersa B-E, Jin XZ, Ionescu-Bujor M, Paci S, Stieglitz R. Post-Test Numerical Analysis of a Helium-Cooled Breeding Blanket First Wall under LOFA Conditions with the MELCOR Fusion Code. Applied Sciences. 2022; 12(1):187. https://doi.org/10.3390/app12010187
Chicago/Turabian StyleAngelucci, Michela, Bruno Gonfiotti, Bradut-Eugen Ghidersa, Xue Zhou Jin, Mihaela Ionescu-Bujor, Sandro Paci, and Robert Stieglitz. 2022. "Post-Test Numerical Analysis of a Helium-Cooled Breeding Blanket First Wall under LOFA Conditions with the MELCOR Fusion Code" Applied Sciences 12, no. 1: 187. https://doi.org/10.3390/app12010187
APA StyleAngelucci, M., Gonfiotti, B., Ghidersa, B.-E., Jin, X. Z., Ionescu-Bujor, M., Paci, S., & Stieglitz, R. (2022). Post-Test Numerical Analysis of a Helium-Cooled Breeding Blanket First Wall under LOFA Conditions with the MELCOR Fusion Code. Applied Sciences, 12(1), 187. https://doi.org/10.3390/app12010187