Modelling the Effects of Nanomaterial Addition on the Permeability of the Compacted Clay Soil Using Machine Learning-Based Flow Resistance Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Tests
2.2. Standard Compaction Test
2.3. Material Properties
2.4. Methods of Modelling
2.4.1. Artificial Neural Networks (ANN)
2.4.2. Multiple Linear Regression (MLR)
2.4.3. Support Vector Machine (SVM)
2.5. Modelling
2.5.1. Flow Resistance (FR)
2.5.2. Regression Similarity Approach
3. Results
3.1. Compaction Test Results
3.2. Flow Resistance Analysis
3.3. Regression and Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Vaverková, M.D.; Elbl, J.; Koda, E.; Adamcová, D.; Bilgin, A.; Lukas, V.; Podlasek, A.; Kintl, A.; Wdowska, M.; Brtnický, M.; et al. Chemical composition and hazardous effects of leachate from the active municipal solid waste landfill surrounded by farmlands. Sustainability 2020, 12, 4531. [Google Scholar] [CrossRef]
- Adhikari, B.; Dahal, K.R.; Khanal, S.N. A review of factors affecting the composition of municipal solid waste landfill leachate. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 272–281. [Google Scholar]
- Zakaria, S.N.F.; Aziz, H.A. Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 140. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.; Beydoun, D.; Amal, R.; Low, G.; Cattle, J. Landfill management, leachate generation, and leach testing of solid wastes in Australia and overseas. Crit. Rev. Environ. Sci. Technol. 2005, 35, 239–332. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Çeçen, F.; Çakiroǧlu, D. Impact of landfill leachate on the co-treatment of domestic wastewater. Biotechnol. Lett. 2001, 23, 821–826. [Google Scholar] [CrossRef]
- Stefanakis, A.; Akratos, C.S.; Tsihrintzis, V.A. Chapter 7—Treatment of Special Wastewaters in VFCWs. In Vertical Flow Constructed Wetlands; Elsevier: Boston, MA, USA, 2014; pp. 145–164. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, Y.; Deng, Q.; Kang, J.; Li, D.; Wang, D. A relation of hydraulic conductivity—void ratio for soils based on Kozeny-Carman equation. Eng. Geol. 2016, 213, 89–97. [Google Scholar] [CrossRef]
- Stepniewski, W.; Widomski, M.K.; Horn, R. Hydraulic conductivity and landfill construction. In Developments in Hydraulic Conductivity Research; Dikinya, O., Ed.; Intech: Rijeka, Croatia, 2011; pp. 249–270. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.Y.; Benson, C.H.; Edil, T.B. Hydraulic conductivity and cation exchange in non-prehydrated and prehydrated bentonite permeated with weak inorganic salt solutions. Clays Clay Miner. 2004, 52, 661–679. [Google Scholar] [CrossRef]
- Setz, M.C.; Tian, K.; Benson, C.H.; Bradshaw, S.L. Effect of ammonium on the hydraulic conductivity of geosynthetic clay liners. Geotext. Geomembr. 2017, 45, 665–673. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, Q.; Liu, L. Impact of high concentration solutions on hydraulic properties: Of geosynthetic clay liner materials. Materials 2012, 5, 2326–2341. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ohtsubo, M.; Li, L.Y.; Higashi, T.; Park, J. Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures. Environ. Geol. 2009, 57, 1145–1153. [Google Scholar] [CrossRef]
- Mosavat, N.; Nalbantoglu, Z. The impact of hazardous waste leachate on performance of clay liners. Waste Manag. Res. 2013, 31, 194–202. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, W.; Xu, H.; Shu, S.; Fan, X. Effects of Leachate Concentration (Na+, Pb2+, COD) on Non-Darcy Flow of Compacted Clay; Springer: Singapore, 2019. [Google Scholar]
- Soon, N.W.; Lee, L.M.; Khun, T.C.; Ling, H.S. Factors Affecting Improvement in Engineering Properties of Residual Soil through Microbial-Induced Calcite Precipitation. J. Geotech. Geoenviron. Eng. 2014, 140, 04014006. [Google Scholar] [CrossRef]
- Viviani, G.; Iovino, M. Wastewater Reuse Effects on Soil Hydraulic Conductivity. J. Irrig. Drain. Eng. 2004, 130, 476–484. [Google Scholar] [CrossRef]
- Anandarajah, A. Mechanism Controlling Permeability Change in Clays due to Changes in Pore Fluid. J. Geotech. Geoenviron. Eng. 2004, 130, 450. [Google Scholar] [CrossRef]
- Emmanuel, E.; Anggraini, V.; Asadi, A.; Raghunandan, M.E. Interaction of landfill leachate with olivine-treated marine clay: Suitability for bottom liner application. Environ. Technol. Innov. 2020, 17, 100574. [Google Scholar] [CrossRef]
- Shackelford, C.D.; Benson, C.H.; Katsumi, T.; Edil, T.B.; Lin, L. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext. Geomembr. 2000, 18, 133–161. [Google Scholar] [CrossRef]
- Visentin, C.; Zanella, P.; Kronhardt, B.K.; Trentin, A.W.d.S.; Braun, A.B.; Thomé, A. Use of geosynthetic clay liner as a waterproofing barrier in sanitary landfills. J. Urban Environ. Eng. 2019, 13, 115–124. [Google Scholar] [CrossRef]
- Mohammadi, M.; Niazian, M. Investigation of Nano-clay effect on geotechnical properties of rasht clay. Int. J. Adv. Sci. Tech. Res. 2013, 3, 37–46. [Google Scholar]
- Daraei, E.; Bayat, H.; Zamani, P.; Gregory, A.S. Long-term effect of magnesium and iron nanoparticles on solute transport in saturated condition. Arch. Agron. Soil Sci. 2021, 1–13. [Google Scholar] [CrossRef]
- Ahmadi, H.; Shafiee, O. Experimental comparative study on the performance of nano-SiO2 and microsilica in stabilization of clay. Eur. Phys. J. Plus 2019, 134, 1–14. [Google Scholar] [CrossRef]
- Naval, S.; Chandan, K.; Sharma, D. Swelling Behaviour of Kaolinite Clay using Nanomaterials. In Proceedings of the International Conference on Sustainable Civil Engineering Practices, Chandigarh, India, 2–3 March 2017. [Google Scholar]
- Cheng, G.; Zhu, H.H.; Wen, Y.N.; Shi, B.; Gao, L. Experimental investigation of consolidation properties of nano-bentonite mixed clayey soil. Sustainability 2020, 12, 459. [Google Scholar] [CrossRef] [Green Version]
- Taipodia, J.; Dutta, J.; Dey, A. Effect of nano particles on properties of soil. In Proceedings of the Indian Geotechnical Conference, Kochi, India, 15–17 December 2011; pp. 105–108. [Google Scholar]
- Ng, C.W.W.; Coo, J.L. Hydraulic conductivity of clay mixed with nanomaterials. Can. Geotech. J. 2015, 52, 808–811. [Google Scholar] [CrossRef]
- Taha, M.R.; Alsharef, J.M.A. Performance of soil stabilized with carbon nanomaterials. Chem. Eng. Trans. 2018, 63, 757–762. [Google Scholar] [CrossRef]
- Bahmani, S.H.; Huat, B.B.K.; Asadi, A.; Farzadnia, N. Stabilization of residual soil using SiO2 nanoparticles and cement. Constr. Build. Mater. 2014, 64, 350–359. [Google Scholar] [CrossRef]
- Ahangar-Asr, A.; Faramarzi, A.; Mottaghifard, N.; Javadi, A.A. Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Comput. Geosci. 2011, 37, 1860–1869. [Google Scholar] [CrossRef]
- Boroumand, A.; Baziar, M.H. Determination of Compacted Clay Permeability By Artificial Neural Networks. In Proceedings of the Ninth International Water Technology Conference, IWTC9 2005, Sharm El-Sheik, Egypt, 1 January 2005; pp. 515–526. [Google Scholar]
- Günaydın, O.; Özbeyaz, A.; Söylemez, M. Regression Analysis of Soil Compaction Parameters Using Support Vector Method. Celal Bayar Üniversitesi Fen Bilimleri Derg. 2018, 14, 443–447. [Google Scholar] [CrossRef]
- Özbeyaz, A.; Söylemez, M. Modeling compaction parameters using support vector and decision tree regression algorithms. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 3079–3093. [Google Scholar] [CrossRef]
- Singh, B.; Sihag, P.; Pandhiani, S.M.; Debnath, S.; Gautam, S. Estimation of permeability of soil using easy measured soil parameters: Assessing the artificial intelligence-based models. ISH J. Hydraul. Eng. 2021, 27, 38–48. [Google Scholar] [CrossRef]
- Sebastian, N.; Sindhu, A.R. Prediction of Permeability of Compacted Clay Liners. Int. J. Res. Eng. IT Soc. Sci. 2016, 6, 42–47. [Google Scholar]
- Santisukkasaem, U.; Olawuyi, F.; Oye, P.; Das, D.B. Artificial Neural Network (ANN) for Evaluating Permeability Decline in Permeable Reactive Barrier (PRB). Environ. Processes 2015, 2, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.K.; Wang, M.C. Artificial neural network prediction models for soil compaction and permeability. Geotech. Geol. Eng. 2008, 26, 47–64. [Google Scholar] [CrossRef]
- Tizpa, P.; Jamshidi Chenari, R.; Karimpour Fard, M.; Lemos Machado, S. ANN prediction of some geotechnical properties of soil from their index parameters. Arab. J. Geosci. 2015, 8, 2911–2920. [Google Scholar] [CrossRef]
- Mahdi, F.M.; Holdich, R.G. Using statistical and artificial neural networks to predict the permeability of loosely packed granular materials. Sep. Sci. Technol. 2017, 52, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Daniel, D.; Anderson, D.; Boynton, S. Fixed-Wall versus Flexible-Wall Permeameters; ASTM International: West Conshohoken, PA, USA, 1985; pp. 107–126. [Google Scholar]
- Ozcoban, M.S. Project Report: The Permeability Change of Nano Particulate Added Undisturbed Clay Soil; Scientific Research Projects, FBA-2017-3158; Yildiz Technical University: İstanbul, Turkey, 2019. [Google Scholar]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2009; Volumes 1–3. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to linear Regression Analysis, 5th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Iplikci, S. Controlling the experimental three-tank system via support vector machines. In International Conference on Adaptive and Natural Computing Algorithms; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer Science+Business Media: Berlin, Germany, 2009; Volume 5495, pp. 391–400. [Google Scholar] [CrossRef]
- Gunn, S. Support Vector Machines for Classification and Regression; ISIS Technical Report; University of Southampton: Southampton, UK, 1998. [Google Scholar]
- Kananizadeh, N.; Ebadi, T.; Ehsan, S.; Khoshniat, S.A.; Khoshniat, A. Behavior of Nanoclay as an Additive in order to Reduce Kahrizak Landfill Clay Permeability. In Proceedings of the 2nd International Conference on Environmental Science and Technology, Belgrade, Serbia, 28 September–2 October 2011; Volume 6, pp. 26–28. [Google Scholar]
- Bhadra, S.M.; Leander, T. Effect of Fly Ash and Nano Calcium Silicates in Clayey Soil used as Clay Liner. Int. Res. J. Eng. Technol. 2020, 7, 2451–2455. [Google Scholar]
- Majeed, Z.H. A Review of Stabilization of Soils by using Nanomaterials. Aust. J. Basic Appl. Sci. 2013, 7, 576–581. [Google Scholar]
Min 1 | Max 1 | Mean 1 | Standard Deviation 1 | |
---|---|---|---|---|
Kaolin | 0 (No flow) | 35.33 | 1.59 | 6.10 |
Kaolin (2% Fe) | 0 (No flow) | 3.77 | 0.51 | 0.71 |
Kaolin (4% Fe) | 0 (No flow) | 174.00 | 6.46 | 30.18 |
Kaolin (2% Al) | 0 (No flow) | 292.00 | 9.40 | 50.76 |
Kaolin (4% Al) | 0 (No flow) | 65.38 | 2.18 | 11.36 |
Min 1 | Max 1 | Mean 1 | Standard Deviation 1 |
---|---|---|---|
27.27 | 213272.72 | 34106.25 | 46688.41 |
Time (Day) | Permeability (cm/s) | |
---|---|---|
Kaolin | 139 | 2.350 × 10−8 |
Kaolin + 2% Fe | 74 | 3.338 × 10−9 |
Kaolin + 4% Fe | 42 | 2.209 × 10−9 |
Kaolin + 2% Al | 39 | 1.503 × 10−9 |
Kaolin + 4% Al | 11 | 1.430 ×10−9 |
Kaolin | Kaolin (2% Fe) | Kaolin (4% Fe) | Kaolin (2% Al) | Kaolin (4% Al) | |
---|---|---|---|---|---|
COD | −0.639 | −0.769 | −0.839 | −0.639 | −0.769 |
TKN | −0.922 | −0.947 | −0.895 | −0.923 | −0.947 |
TP | −0.948 | −0.946 | −0.932 | −0.948 | −0.946 |
Kaolin | Kaolin (2% Fe) | Kaolin (4% Fe) | Kaolin (2% Al) | Kaolin (4% Al) | |
---|---|---|---|---|---|
0.942 | 0.931 | 0.918 | 0.912 | 0.811 | |
0.970 | 0.970 | 0.960 | 0.930 | 0.450 | |
0.003 | 0.005 | 0.007 | 0.008 | 0.036 |
Kaolin | Kaolin (2% Fe) | Kaolin (4% Fe) | Kaolin (2% Al) | Kaolin (4% Al) | |
---|---|---|---|---|---|
0.903 | 0.862 | 0.858 | 0.823 | 0.792 | |
0.900 | 0.870 | 0.870 | 0.710 | 0.350 | |
0.009 | 0.019 | 0.020 | 0.031 | 0.043 |
Kaolin | Kaolin (2% Fe) | Kaolin (4% Fe) | Kaolin (2% Al) | Kaolin (4% Al) | |
---|---|---|---|---|---|
0.950 | 0.872 | 0.857 | 0.861 | 0.787 | |
0.980 | 0.900 | 0.870 | 0.820 | 0.320 | |
0.002 | 0.016 | 0.020 | 0.019 | 0.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özçoban, M.Ş.; Isenkul, M.E.; Sevgen, S.; Acarer, S.; Tüfekci, M. Modelling the Effects of Nanomaterial Addition on the Permeability of the Compacted Clay Soil Using Machine Learning-Based Flow Resistance Analysis. Appl. Sci. 2022, 12, 186. https://doi.org/10.3390/app12010186
Özçoban MŞ, Isenkul ME, Sevgen S, Acarer S, Tüfekci M. Modelling the Effects of Nanomaterial Addition on the Permeability of the Compacted Clay Soil Using Machine Learning-Based Flow Resistance Analysis. Applied Sciences. 2022; 12(1):186. https://doi.org/10.3390/app12010186
Chicago/Turabian StyleÖzçoban, Mehmet Şükrü, Muhammed Erdem Isenkul, Selçuk Sevgen, Seren Acarer, and Mertol Tüfekci. 2022. "Modelling the Effects of Nanomaterial Addition on the Permeability of the Compacted Clay Soil Using Machine Learning-Based Flow Resistance Analysis" Applied Sciences 12, no. 1: 186. https://doi.org/10.3390/app12010186
APA StyleÖzçoban, M. Ş., Isenkul, M. E., Sevgen, S., Acarer, S., & Tüfekci, M. (2022). Modelling the Effects of Nanomaterial Addition on the Permeability of the Compacted Clay Soil Using Machine Learning-Based Flow Resistance Analysis. Applied Sciences, 12(1), 186. https://doi.org/10.3390/app12010186