Associations of Urinary Collagen II Neoepitope C2C with Total Knee Replacement Outcomes: Is OA a Systemic Disease in Rapidly Progressive Cases?
Abstract
:1. Introduction
- (1)
- Whether uC2C values were elevated in patients scheduled for TKR surgery;
- (2)
- How the surgical intervention affected uC2C values;
- (3)
- How uC2C values were related to radiographic and clinical parameters before and after TKR;
- (4)
- Whether there were gender differences in the dynamics of uC2C values.
2. Materials and Methods
2.1. Subjects
2.2. uC2C Measurement
2.3. Radiographic Evaluation of Knees
2.4. Visual Analog Scale for Pain (VAS Pain) in Joints in Different Skeletal Areas
2.5. Total Knee Replacement
2.6. The Knee Injury and Osteoarthritis Outcome Score (KOOS)
2.7. RAND 36-Item Short-Form Survey
2.8. Lower Limb and Knee Performance Tests
2.9. Statistical Analysis
3. Results
3.1. The Clinical Characteristics of the Study Cohort in the Preoperative Period
3.2. uC2C Levels in the pre-TKR Period and Biomarker Associations with Clinical and Radiographic Parameters
3.3. The Dynamics of uC2C Levels after TKR
3.4. Association of UC2C Levels with Improvement of Subjective and Objective Limitations in the Postoperative Period
3.4.1. KOOS
3.4.2. SF-36
3.4.3. Lower Limb Performance Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Radiographic kOA Grades | gOA | |
---|---|---|
KL | Grade 2 | Grade 3 |
Grade 2 | 3 | 1 |
Grade 3 | 11 | 28 |
Grade 4 | 2 | 41 |
Kellgren/Lawrence Scoring System | Nottingham Scoring System | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | Median (1st–3rd Quantiles) | p-Value of Kruskal Test | p-Value of Wilcoxon Test 3 vs. 4 | Median (1st–3rd Quantiles) | p-Value of Wilcoxon Test | |||
Grade 2 | Grade 3 | Grade 4 | Grade 2 | Grade 3 | ||||
uC2C/Crea, ng/mmol | 610 (526–747) | 753 (627–986) | 1062 (677–1301) | 0.054 | 0.047 | 732 (635–967) | 934 (623–1179) | 0.27 |
KOOSsymp | 44 (39–50) | 26 (17–40) | 29 (21–40) | 0.20 | 0.57 | 30 (22–46) | 29 (17–40) | 0.30 |
KOOSpain | 46 (38–50) | 34 (25–44) | 33 (27–42) | 0.37 | 0.95 | 40 (31–47) | 33 (24–42) | 0.09 |
KOOSadl | 39 (33–44) | 35 (29–44) | 38 (28–45) | 0.79 | 0.53 | 36 (31–43) | 35 (28–44) | 0.81 |
KOOSsp/recr | 0 (0–1) | 0 (0–0) | 0 (0–4) | 0.24 | 0.10 | 0 (0–0) | 0 (0–4) | 0.18 |
KOOSqol | 20 (13–30) | 15 (5–20) | 15 (5–20) | 0.57 | 0.78 | 18 (5–25) | 15 (5–20) | 0.61 |
KOOS Subscales | Whole Group | Females | Males | |||
---|---|---|---|---|---|---|
Spearman’s Rho | p-Value | Spearman’s Rho | p-Value | Spearman’s Rho | p-Value | |
KOOSsymp | –0.13 | 0.25 | –0.23 | 0.15 | 0.07 | 0.66 |
KOOSpain | –0.31 | 0.006 | –0.20 | 0.21 | –0.33 | 0.04 |
KOOSadl | –0.20 | 0.08 | –0.12 | 0.45 | –0.20 | 0.22 |
KOOSsp/recr | –0.11 | 0.32 | –0.03 | 0.87 | –0.14 | 0.40 |
KOOSqol | –0.10 | 0.37 | –0.06 | 0.72 | –0.05 | 0.77 |
SF36PF | –0.13 | 0.26 | –0.24 | 0.14 | –0.02 | 0.91 |
SF36RP | 0.08 | 0.49 | –0.14 | 0.40 | 0.22 | 0.17 |
SF36RE | –0.16 | 0.16 | –0.24 | 0.14 | –0.05 | 0.76 |
SF36VT | –0.23 | 0.05 | –0.22 | 0.19 | –0.16 | 0.31 |
SF36MH | –0.12 | 0.28 | 0.11 | 0.50 | –0.24 | 0.13 |
SF36SF | –0.24 | 0.03 | –0.38 | 0.02 | –0.08 | 0.64 |
SF36BP | –0.18 | 0.11 | 0.18 | 0.28 | –0.12 | 0.45 |
SF36GH | 0.02 | 0.85 | 0.12 | 0.46 | 0.01 | 0.95 |
TUG | 0.16 | 0.17 | 0.16 | 0.32 | 0.10 | 0.54 |
Test-Chair | –0.20 | 0.07 | –0.18 | 0.27 | –0.13 | 0.43 |
30sCST | –0.10 | 0.44 | –0.08 | 0.65 | 0.07 | 0.73 |
30mFPWT | 0.12 | 0.30 | 0.14 | 0.40 | –0.01 | 0.94 |
KOOS Subscales | Models: Improvement Group * (ImpG) versus No Change Group (NCG) | ||||||
---|---|---|---|---|---|---|---|
Independent Variables in the Model | All Subjects | Males | Females | ||||
n (ImpG/ NCG) | OR (CI 95%) | n (ImpG/ NCG) | OR (CI 95%) | n (ImpG/ NCG) | OR (CI 95%) | ||
KOOSsymp | log2(C2C) | 38/29 | 2.79 (1.19–6.53) ** | 14/19 | 1.15 (0.39–3.37) | 24/10 | 8.56 (1.42–51.59) ** |
log2(C2C) Age BMI Sex | 1.99 (0.78–5.04) 1.06 (0.93–1.20) 0.99 (0.87–1.14) 2.47 (0.80–7.66) | 1.35 (0.40–4.48) 1.01 (0.86–1.18) 1.08 (0.88–1.33) – | 9.43 (1.19–74.73) ** 1.13 (0.88–1.44) 0.80 (0.62–1.04) – | ||||
KOOSpain | log2(C2C) | 46/21 | 0.99 (0.44–2.22) | 22/11 | 0.81 (0.27–2.46) | 24/10 | 1.17 (0.3–4.49) |
log2(C2C) Age BMI Sex | 0.94 (0.38–2.34) 0.95 (0.83–1.07) 0.86 (0.74–1.00) 1.87 (0.54–6.52) | 0.52 (0.14–2.02) 0.92 (0.77–1.11) 0.78 (0.60–1.01) – | 1.23 (0.26–5.81) 0.95 (0.79–1.16) 1.01 (0.82–1.24) – | ||||
KOOSadl | log2(C2C) | 44/24 | 1.58 (0.72–3.48) | 21/13 | 0.97 (0.34–2.79) | 23/11 | 3.46 (0.8–14.98) |
log2(C2C) Age BMI Sex | 1.35 (0.56–3.25) 1.06 (0.94–1.19) 0.99 (0.87–1.13) 1.10 (0.36–3.39) | 0.62 (0.18–2.15) 1.08 (0.92–1.26) 0.86 (0.70–1.07) – | 3.03 (0.60–15.3) 1.02 (0.85–1.23) 1.05 (0.87–1.28) – | ||||
KOOSsp/ recr | log2(C2C) | 25/44 | 0.81 (0.38–1.76) | 17/18 | 1.09 (0.39–3.04) | 8/26 | 1.09 (0.26–4.66) |
log2(C2C) Age BMI Sex | 1.27 (0.52–3.10) 0.94 (0.83–1.06) 1.02 (0.89–1.16) 0.30 (0.09–0.94) ** | 1.33 (0.42–4.24) 0.93 (0.80–1.08) 1.03 (0.85–1.23) – | 1.23 (0.26–5.81) 0.95 (0.79–1.16) 1.01 (0.82–1.24) – | ||||
KOOSqol | log2(C2C) | 36/30 | 1.23 (0.58–2.60) | 14/18 | 0.85 (0.29–2.44) | 22/12 | 1.19 (0.33–4.3) |
log2(C2C) Age BMI Sex | 0.81 (0.33–1.99) 1.10 (0.97–1.24) 1.08 (0.95–1.24) 2.05 (0.67–6.31) | 0.85 (0.26–2.77) 1.05 (0.90–1.23) 1.05 (0.86–1.2) – | 0.63 (0.14–2.90) 1.17 (0.97–1.42) 1.12 (0.92–1.36) – |
References
- Törmälehto, S.; Aarnio, E.; Mononen, M.E.; Arokoski, J.P.A.; Korhonen, R.K.; Martikainen, J.A. Eight-year trajectories of changes in health-related quality of life in knee osteoarthritis: Data from the Osteoarthritis Initiative (OAI). PLoS ONE 2019, 14, e0219902. [Google Scholar] [CrossRef] [Green Version]
- Wallace, I.J.; Worthington, S.; Felson, D.T.; Jurmain, R.D.; Wren, K.T.; Maijanen, H.; Woods, R.J.; Lieberman, D.E. Knee Osteoarthritis Has Doubled in Prevalence since the Mid-20th Century. Proc. Natl. Acad. Sci. USA 2017, 114, 9332–9336. [Google Scholar] [CrossRef] [Green Version]
- Berenbaum, F.; Wallace, I.J.; Lieberman, D.E.; Felson, D.T. Modern-Day Environmental Factors in the Pathogenesis of Osteoarthritis. Nat. Rev. Rheumatol. 2018, 14, 674–681. [Google Scholar] [CrossRef]
- van Spil, W.E.; Bierma-Zeinstra, S.M.A.; Deveza, L.A.; Arden, N.K.; Bay-Jensen, A.-C.; Kraus, V.B.; Carlesso, L.; Christensen, R.; Van Der Esch, M.; Kent, P.; et al. A Consensus-Based Framework for Conducting and Reporting Osteoarthritis Phenotype Research. Arthritis Res. Ther. 2020, 22, 54. [Google Scholar] [CrossRef] [Green Version]
- Dell’Isola, A.; Allan, R.; Smith, S.L.; Marreiros, S.S.P.; Steultjens, M. Identification of Clinical Phenotypes in Knee Osteoarthritis: A Systematic Review of the Literature. BMC Musculoskelet. Disord. 2016, 17, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waarsing, J.H.; Bierma-Zeinstra, S.M.A.; Weinans, H. Distinct subtypes of knee osteoarthritis: Data from the Osteoarthritis Initiative. Rheumatology 2015, 54, 1650–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deveza, L.A.; Melo, L.; Yamato, T.P.; Mills, K.; Ravi, V.; Hunter, D.J. Knee osteoarthritis phenotypes and their relevance for outcomes: A systematic review. Osteoarthr. Cartil. 2017, 25, 1926–1941. [Google Scholar] [CrossRef] [Green Version]
- Felson, D.T.; Lawrence, R.C.; Dieppe, P.A.; Hirsch, R.; Helmick, C.G.; Jordan, J.M.; Kington, R.S.; Lane, N.E.; Nevitt, M.C.; Zhang, Y.; et al. Osteoarthritis: New Insights. Part 1: The Disease and Its Risk Factors. Ann. Intern. Med. 2000, 133, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Kumm, J.; Tamm, A.; Lintrop, M.; Tamm, A. The prevalence and progression of radiographic knee osteoarthritis over 6 years in a population-based cohort of middle-aged subjects. Rheumatol. Int. 2012, 32, 3545–3550. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.; Kirwan, J.R.; Elson, C.J.; Granell, R.; Clarke, S. Suggestion of nonlinear or phasic progression of knee osteoarthritis based on measurements of serum cartilage oligomeric matrix protein levels over five years. Arthritis Rheum. 2004, 50, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Kumm, J.; Tamm, A.; Lintrop, M.; Tamm, A. The value of cartilage biomarkers in progressive knee osteoarthritis: Cross-sectional and 6-year follow-up study in middle-aged subjects. Rheumatol. Int. 2013, 33, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Kumm, J.; Tamm, A.; Lintrop, M.; Tamm, A. The prevalence and progression of radiographic knee osteoarthritis over 9 years in a population-based cohort of middle-aged subjects. Osteoarthr. Cartil. 2013, 21, S204. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.J.; Neogi, T. Flare-ups of osteoarthritis: What do they mean in the short-term and the long-term? Osteoarthr. Cartil. 2020, 28, 870–873. [Google Scholar] [CrossRef]
- Maillefert, J.F.; Roy, C.; Cadet, C.; Nizard, R.; Berdah, L.; Ravaud, P. Factors influencing surgeons’ decisions in the indication for total joint replacement in hip osteoarthritis in real life. Arthritis Care Res. 2008, 59, 255–262. [Google Scholar] [CrossRef]
- Huynh, C.; Puyraimond-Zemmour, D.; Maillefert, J.F.; Conaghan, P.G.; Davis, A.M.; Gunther, K.-P.; Hawker, G.; Hochberg, M.C.; Kloppenburg, M.; Lim, K.; et al. Factors associated with the orthopaedic surgeon’s decision to recommend total joint replacement in hip and knee osteoarthritis: An international cross-sectional study of 1905 patients. Osteoarthr. Cartil. 2018, 26, 1311–1318. [Google Scholar] [CrossRef] [Green Version]
- Dam, E.B.; Loog, M.; Christiansen, C.; Byrjalsen, I.; Folkesson, J.; Nielsen, M.; Qazi, A.A.; Pettersen, P.C.; Garnero, P.; Karsdal, M.A. Identification of progressors in osteoarthritis by combining biochemical and MRI-based markers. Arthritis Res. Ther. 2009, 11, R115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Spil, W.E.; Bijlsma, J.W.; Mastbergen, S.C.; Lafeber, F.P. Associations of ctx-ii with biochemical markers of bone turnover raise questions on its tissue origin: Data from check, a cohort study of early osteoarthritis. Osteoarthr. Cartil. 2012, 20, S78. [Google Scholar] [CrossRef] [Green Version]
- Arends, R.H.G.P.; Karsdal, M.A.; Verburg, K.M.; West, C.R.; Bay-Jensen, A.C.; Keller, D.S. Identification of serological biomarker profiles associated with total joint replacement in osteoarthritis patients. Osteoarthr. Cartil. 2017, 25, 866–877. [Google Scholar] [CrossRef] [Green Version]
- Kraus, V.B.; Collins, J.E.; Hargrove, D.; Losina, E.; Nevitt, M.; Katz, J.N.; Wang, S.X.; Sandell, L.J.; Hoffmann, S.C.; Hunter, D.J. Predictive validity of biochemical biomarkers in knee osteoarthritis: Data from the FNIH OA Biomarkers Consortium. Ann. Rheum. Dis. 2017, 76, 186–195. [Google Scholar] [CrossRef]
- Kuhi, L.; Tamm, A.E.; Tamm, A.O.; Kisand, K. Cartilage collagen neoepitope C2C in urine as an integrative diagnostic marker for early knee osteoarthritis. Osteoarthr. Cartil. Open 2020, 2, 100096. [Google Scholar] [CrossRef]
- Price, A.J.; Alvand, A.; Troelsen, A.; Katz, J.N.; Hooper, G.; Gray, A.; Carr, A.; Beard, D. Knee replacement. Lancet 2018, 392, 1672–1682. [Google Scholar] [CrossRef]
- Bay-Jensen, A.C.; Bager, C.; Bihlet, A.; Thudium, C.; Byrjalsen, I.; Nielsen, H.; Andersen, J.; Riis, B.J.; Christiansen, C.; Karsdal, M.A. Total joint replacement (TJR) as clinical endpoint in OA; prevalence and incidence rates of TJRS from the Prospective Epidemiologic Risk Factor (PERF I) study. Osteoarthr. Cartil. 2018, 26, S198–S199. [Google Scholar] [CrossRef] [Green Version]
- Alcaraz, M.J.; Guillén, M.I.; Ferrándiz, M.L. Emerging Therapeutic Agents in Osteoarthritis. Biochem. Pharmacol. 2019, 165, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.; Nunley, R.M.; Barrack, R.L. Patient dissatisfaction following total knee replacement: A growing concern? Bone Jt. J. 2014, 96, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Beswick, A.D.; Wylde, V.; Gooberman-Hill, R.; Blom, A.; Dieppe, P. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open. 2012, 2, e000435. [Google Scholar] [CrossRef]
- Sweet, M.B.E.; Coelho, A.; Schnitzler, C.M.; Schnitzer, T.J.; Lenz, M.E.; Jakim, I.; Kuettner, K.E.; Thonar, E.J.-M.A. Serum keratan sulfate levels in osteoarthritis patients. Arthritis Rheum. 1988, 31, 648–652. [Google Scholar] [CrossRef]
- Deberg, M.; Dubuc, J.E.; Labasse, A.; Sanchez, C.; Quettier, E.; Bosseloir, A.; Crielaard, J.-M.; Henrotin, Y. One-year follow-up of Coll2-1, Coll2-1NO2 and myeloperoxydase serum levels in osteoarthritis patients after hip or knee replacement. Ann. Rheum. Dis. 2008, 67, 168–174. [Google Scholar] [CrossRef]
- Endres, E.; van Drongelen, S.; Meurer, A.; Zaucke, F.; Stief, F. Effect of total joint replacement in hip osteoarthritis on serum COMP and its correlation with mechanical-functional parameters of gait analysis. Osteoarthr. Cartil. Open 2020, 2, 100034. [Google Scholar] [CrossRef]
- Kong, S.Y.; Stabler, T.V.; Criscione, L.G.; Elliott, A.L.; Jordan, J.M.; Kraus, V.B. Diurnal Variation of Serum and Urine Biomarkers in Patients with Radiographic Knee Osteoarthritis. Arthritis Rheum. 2006, 54, 2496–2504. [Google Scholar] [CrossRef]
- Poole, A.R.; Ha, N.; Bourdon, S.; Sayre, E.C.; Guermazi, A.; Cibere, J. Ability of a Urine Assay of Type II Collagen Cleavage by Collagenases to Detect Early Onset and Progression of Articular Cartilage Degeneration: Results from a Population-based Cohort Study. J. Rheumatol. 2016, 43, 1864–1870. [Google Scholar] [CrossRef]
- Boegård, T.; Rudling, O.; Petersson, I.F.; Sanfridsson, J.; Saxne, T.; Svensson, B.; Jonsson, K. Joint-space width in the axial view of the patello-femoral joint. Definitions and comparison with MR imaging. Acta Radiol. 1998, 39, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Nagaosa, Y.; Mateus, M.; Hassan, B.; Lanyon, P.; Doherty, M. Development of a logically devised line drawing atlas for grading of knee osteoarthritis. Ann. Rheum. Dis. 2000, 59, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellgren, J.H.; Lawrence, J.S. Radiological Assessment of Osteo-Arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Ayral, X.; Pickering, E.H.; Woodworth, T.G.; Mackillop, N.; Dougados, M. Synovitis: A potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis–results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthr. Cartil. 2005, 13, 61–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outerbridge, R.E. The Etiology of Chondromalacia Patellae. J. Bone Jt. Surg. Br. 1961, 43-B, 752–757. [Google Scholar] [CrossRef]
- Slattery, C.; Kweon, C.Y. Classifications in Brief: Outerbridge Classification of Chondral Lesions. Clin. Orthop. 2018, 476, 2101–2104. [Google Scholar] [CrossRef]
- Glassman, S.D.; Copay, A.G.; Berven, S.H.; Polly, D.W.; Subach, B.R.; Carreon, L.Y. Defining substantial clinical benefit following lumbar spine arthrodesis. J. Bone Jt. Surg. Am. 2008, 90, 1839–1847. [Google Scholar] [CrossRef]
- Ogura, T.; Ackermann, J.; Barbieri Mestriner, A.; Merkely, G.; Gomoll, A.H. Minimal Clinically Important Differences and Substantial Clinical Benefit in Patient-Reported Outcome Measures after Autologous Chondrocyte Implantation. Cartilage 2020, 11, 412–422. [Google Scholar] [CrossRef]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Kuhi, L.; Tamm, A.E.; Tamm, A.O.; Kisand, K. Risk Assessment of the Progression of Early Knee Osteoarthritis by Collagen Neoepitope C2C: A Longitudinal Study of an Estonian Middle-Aged Cohort. Diagnostics 2021, 11, 1236. [Google Scholar] [CrossRef]
- Kraus, V.B.; Hargrove, D.E.; Hunter, D.J.; Renner, J.B.; Jordan, J.M. Establishment of Reference Intervals for Osteoarthritis-Related Soluble Biomarkers: The FNIH/OARSI OA Biomarkers Consortium. Ann. Rheum. Dis. 2017, 76, 179–185. [Google Scholar] [CrossRef]
- Addison, S.; Coleman, R.E.; Feng, S.; McDaniel, G.; Kraus, V.B. Whole-body bone scintigraphy provides a measure of the total-body burden of osteoarthritis for the purpose of systemic biomarker validation. Arthritis Rheum. 2009, 60, 3366–3373. [Google Scholar] [CrossRef] [PubMed]
- Stürmer, T.; Sun, Y.; Sauerland, S.; Zeissig, I.; Günther, K.P.; Puhl, W.; Brenner, H. Serum cholesterol and osteoarthritis. The baseline examination of the Ulm Osteoarthritis Study. J. Rheumatol. 1998, 25, 1827–1832. [Google Scholar]
- Kraus, V.B.; Kepler, T.B.; Stabler, T.; Renner, J.; Jordan, J. First qualification study of serum biomarkers as indicators of total body burden of osteoarthritis. PLoS ONE 2010, 5, e9739. [Google Scholar] [CrossRef]
- Muraki, S.; Oka, H.; Akune, T.; Mabuchi, A.; En-yo, Y.; Yoshida, M.; Saika, A.; Suzuki, T.; Yoshida, H.; Ishibashi, H.; et al. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population-based cohorts: The ROAD study. Osteoarthr. Cartil. 2009, 17, 1137–1143. [Google Scholar] [CrossRef] [Green Version]
- Bihlet, A.R.; Byrjalsen, I.; Bay-Jensen, A.C.; Andersen, J.R.; Christiansen, C.; Riis, B.J.; Karsdal, M.A. Associations between biomarkers of bone and cartilage turnover, gender, pain categories and radiographic severity in knee osteoarthritis. Arthritis Res. Ther. 2019, 21, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Boyan, B.D.; Tosi, L.L.; Coutts, R.D.; Enoka, R.M.; Hart, D.A.; Nicolella, D.P.; Berkley, K.J.; Sluka, K.A.; Kwoh, C.K.; O’Connor, M.I.; et al. Addressing the gaps: Sex differences in osteoarthritis of the knee. Biol. Sex Differ. 2013, 4, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perruccio, A.V.; Chandran, V.; Power, J.D.; Kapoor, M.; Mahomed, N.N.; Gandhi, R. Systemic inflammation and painful joint burden in osteoarthritis: A matter of sex? Osteoarthr. Cartil. 2017, 25, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kisand, K.; Tamm, A.E.; Lintrop, M.; Tamm, A.O. New insights into the natural course of knee osteoarthritis: Early regulation of cytokines and growth factors, with emphasis on sex-dependent angiogenesis and tissue remodeling. A pilot study. Osteoarthr. Cartil. 2018, 26, 1045–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamm, A.O.; Kumm, J.; Tamm, A.E.; Kukner, A.; Rips, L.; Tein, T.; Saluse, T.; Pintsaar, A. Detection of type ii collagen degradation by urinary ctx-ii in patients with minimal lesions of knee cartilage in arthroscopy. Osteoarthr. Cartil. 2012, 20, S94. [Google Scholar] [CrossRef] [Green Version]
- Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1145–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wylde, V.; Sayers, A.; Odutola, A.; Gooberman-Hill, R.; Dieppe, P.; Blom, A.W. Central sensitization as a determinant of patients’ benefit from total hip and knee replacement. Eur. J. Pain 2017, 21, 357–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, E.; Kortekaas, M.C.; Watt, I.; Huizinga, T.W.J.; Kloppenburg, M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann. Rheum. Dis. 2011, 70, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Ruan, G.; Antony, B.; Cao, P.; Li, J.; Han, W.; Li, Y.; Yung, S.N.; Wluka, A.E.; Winzenberg, T.; et al. The interactions between MRI-detected osteophytes and bone marrow lesions or effusion-synovitis on knee symptom progression: An exploratory study. Osteoarthr. Cartil. 2021, 29, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Sellam, J.; Rat, A.C.; Fellahi, S.; Bastard, J.-P.; Ngueyon Sime, W.; Ea, H.K.; Chevalier, X.; Richette, P.; Capeau, J.; Guillemin, F.; et al. Pain in women with knee and/or hip osteoarthritis is related to systemic inflammation and to adipose tissue dysfunction: Cross-sectional results of the KHOALA cohort. Semin. Arthritis Rheum. 2021, 51, 129–136. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristics/Timepoints | Pre-TKR | 3 Months Post-TKR | 12 Months Post-TKR |
---|---|---|---|
Subjects, n (%) | 86 (100) | 70 (81) | 74 (86) |
Mean age, years ± SD | 59.9 ± 4.7 | 60.2 ± 4.7 | 60.9 ± 4.7 |
Mean BMI, kg/m2 ± SD | 32.3 ± 4.2 | 32.3 ± 4.2 | 32.4 ± 4.2 |
Previous TKR of opposite knee, n (%) | 20 (23) | 16 (23) | 15 (20) |
Female, % | 50 | 53 | 49 |
Mean age in males, years ± SD | 59.2 ± 5.1 | 59.5 ± 5.1 | 60.2 ± 5.1 |
Mean age in females, years ± SD | 60.6 ± 4.2 | 60.9 ± 4.2 | 61.6 ± 4.2 |
Mean BMI in males, kg/m2 ± SD | 31.5 ± 4.0 | 31.4 ± 4.0 | 31.3 ± 4.4 |
Mean BMI in females, kg/m2 ± SD | 33.1 ± 4.3 | 33.1 ± 4.3 | 33.7 ± 4.4 |
Obesity (BMI ≥ 30), n (%) | 59 (69) | 49 (70) | 50 (68) |
KL grade 2, n (%) | 4 (4.7) | - | - |
KL grade 3, n (%) | 39 (45.3) | - | - |
KL grade 4, n (%) | 43 (50.0) | - | - |
gOA grade 2, n (%) | 16 (19) | - | - |
gOA grade 3, n (%) | 70 (81) | - | - |
Parameter | Median (1st–3rd Quantiles) | p-Value of Paired Wilcoxon Test | ||||
---|---|---|---|---|---|---|
Pre-TKR | 3 m after | 12 m after | 1 vs. 2 | 1 vs. 3 | 2 vs. 3 | |
KOOS subscales (self-assessment) | ||||||
KOOSsymp | 29 (20–43) | 43 (26–57) | 56 (43–66) | 7.7 × 10–5 | 1.2 × 10–11 | 9.5 × 10–7 |
KOOSpain | 33 (27–42) | 58 (42–69) | 64 (54–73) | 5.1 × 10–9 | 5.3 × 10–13 | 0.0008 |
KOOSadl | 35 (29–44) | 55 (41–65) | 64 (56–71) | 4.0 × 10–8 | 4.3 × 10–13 | 5.6 × 10–5 |
KOOSsp/recr | 0 (0–4) | 0 (0–12) | 12 (0–25) | 0.0005 | 4.6 × 10–9 | 0.0004 |
KOOSqol | 15 (5–20) | 28 (15–40) | 35 (20–45) | 2.65 × 10–7 | 9.2 × 10–11 | 0.02 |
SF-36 subscales (self-assessment) | ||||||
SF36PF | 25 (17–45) | 40 (30–55) | 50 (34–60) | 3.4 × 10–5 | 7.5 × 10–10 | 0.0022 |
SF36RP | 0 (0–25) | 0 (0–50) | 0 (0–75) | 0.20 | 0.0025 | 0.021 |
SF36RE | 33 (0–100) | 33 (0–100) | 67 (0–100) | 0.81 | 0.13 | 0.021 |
SF36VT | 35 (29–45) | 40 (29–50) | 40 (30–50) | 0.15 | 0.020 | 0.63 |
SF36MH | 40 (32–48) | 40 (32–48) | 40 (32–48) | 0.17 | 0.25 | 0.95 |
SF36SF | 50 (25–75) | 63 (38–75) | 81 (63–100) | 0.020 | 1.5 × 10–8 | 0.00015 |
SF36BP | 23 (13–35) | 45 (23–58) | 45 (33–78) | 1.2 × 10–6 | 4.4 × 10–9 | 0.26 |
SF36GH | 55 (40–65) | 60 (54–65) | 60 (49–70) | 0.081 | 0.073 | 0.35 |
Lower limb performance tests | ||||||
TUG (s) | 12 (10–14.5) | 11 (10–12) | 10 (8–12) | 0.051 | 0.00085 | 0.0088 |
Test-Chair (cm) | 48 (43.5–48.5) | 49.25 (40–50) | 45 (35–50) | 0.24 | 0.0018 | 0.0034 |
30sCST (times) | 7 (4–9) | 8 (6–11) | 9.5 (7–12) | 0.20 | 0.022 | 0.32 |
30mFPWT (s) | 28.5 (24.25–35) | 25 (23–30) | 24 (21–25) | 0.0042 | 5.5 × 10–9 | 0.0002 |
Biomarker of Coll2 degradation | ||||||
uC2C/Crea | 914 (623–1179) | 947 (756–1311) | 840 (640–1069) | 0.012 | 0.54 | 0.014 |
Clinically Important KOOS Change * | Substantial Worsening, n (%) | No Change, n (%) | Substantial Improvement, n (%) | Total ** |
---|---|---|---|---|
KOOSsymp | 1 (1%) | 30 (42%) | 40 (56%) | 71 |
KOOSpain | 0 (0%) | 21 (30%) | 49 (70%) | 70 |
KOOSadl | 0 (0%) | 25 (35%) | 46 (65%) | 71 |
KOOSsp/recr | 0 (0%) | 46 (65%) | 25 (35%) | 71 |
KOOSqol | 1 (1%) | 32 (46%) | 37 (56%) | 70 |
KOOS Subscale | Substantial Improvement Group * | No Change Group | p-Value (between Groups) ** | ||
---|---|---|---|---|---|
n | uC2C ***, ng/mmol | n | uC2C ***, ng/mmol | ||
KOOSsymp | 38 | 1016.9 (782.8–1204.9) | 29 | 718.8 (570.5–899.7) | 0.01 |
KOOSpain | 46 | 935.8 (637.7–1178.9) | 21 | 752.7 (703.1–1315.5) | 0.94 |
KOOSadl | 44 | 974.0 (626.3–1216.2) | 24 | 731.9 (668.7–978.0) | 0.16 |
KOOSsp/recr | 25 | 917.3 (608.8–1203.5) | 44 | 923.6 (687.9–1178.7) | 0.70 |
KOOSqol | 36 | 956.3 (626.3–1216.2) | 30 | 839.6 (685.4–1132.0) | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhi, L.; Tamm, A.E.; Kumm, J.; Järv, K.; Märtson, A.; Tamm, A.O.; Kisand, K. Associations of Urinary Collagen II Neoepitope C2C with Total Knee Replacement Outcomes: Is OA a Systemic Disease in Rapidly Progressive Cases? Appl. Sci. 2022, 12, 164. https://doi.org/10.3390/app12010164
Kuhi L, Tamm AE, Kumm J, Järv K, Märtson A, Tamm AO, Kisand K. Associations of Urinary Collagen II Neoepitope C2C with Total Knee Replacement Outcomes: Is OA a Systemic Disease in Rapidly Progressive Cases? Applied Sciences. 2022; 12(1):164. https://doi.org/10.3390/app12010164
Chicago/Turabian StyleKuhi, Liisa, Ann E. Tamm, Jaanika Kumm, Kristel Järv, Aare Märtson, Agu O. Tamm, and Kalle Kisand. 2022. "Associations of Urinary Collagen II Neoepitope C2C with Total Knee Replacement Outcomes: Is OA a Systemic Disease in Rapidly Progressive Cases?" Applied Sciences 12, no. 1: 164. https://doi.org/10.3390/app12010164