Circuit Breakers in Low- and Medium-Voltage DC Microgrids for Protection against Short-Circuit Electrical Faults: Evolution and Future Challenges
Abstract
:1. Introduction
2. DC Microgrid Faults
3. DC Circuit Breakers
3.1. Fuses
3.2. Mechanical Circuit Breakers
3.3. Solid-State Circuit Breakers
3.3.1. SSCBs General Description
3.3.2. Recent Developments of SSCBs
3.3.3. Z-Source: The New Generation of SSCBs
3.4. Hybrid Circuit Breakers
3.4.1. General Description of HCBs
3.4.2. Recent Developments of HCBs
4. DC CB Evolution
5. Future Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Alternating Current |
ACMGs | Alternating Current Microgrids |
ACZ-VCBs | Artificial current zero vacuum switch |
ACZ | Artificial Current Zero |
Bi | Bi-directional |
BJT | Bipolar junction transistor |
BRT | Base resistance thyristor |
C | Capacitance |
CBs | Circuit Breakers |
CS-MCT | Cathode Metal oxide Semiconductor Controlled Thyristor |
DC | Direct Current |
DCMGs | Direct Current Microgrids |
DG | Distributed Generation |
GaN | Gallium Nitride |
GTO | Gate-Turn-off Thyristors |
HCBs | Hybrid Circuit Breakers |
HEMTs | High-Electron-Mobility Transistor |
iBreaker | Intelligent tri-mode SSCB |
IEGT | Injection-Enhanced Gate Transistor |
IGBT | Silicon Insulated-Gate Bipolar Transistor |
IGCT | Integrated Gate-Commutated Thyristor |
JFETs | Junction-Gate Field Effect Transistor |
L | Inductance |
MCBs | Mechanical Circuit Breakers |
MOSFETs | Metal-Oxide Semiconductor Field Effect Transistors |
MOVs | Metal Oxide Varistor |
PDs | Protective Devices |
PV | Photovoltaic Panel |
PWM | Pulse Width Modulation |
RB-IGCT | Reverse Blocking IGCT |
RC | Resistor and Capacitor |
RCD | Resistor, Capacitor and Diode |
Rds | On-Resistance value during operation |
SCR | Semiconductor Controlled Rectifier |
Si | Silicon |
SiC | Silicon Carbide |
SITs | Static Induction Transistors |
SSCB - LCL | solid-state Circuit Breaker Latching and Current Limiting |
SSCBs | Solid-state Circuit Breakers |
T-ZSCBs | T-Z-Source Circuit Breakers |
VCBs | Vacuum CBs |
WBG | Wide Band Gap |
ZSCBs | Z-Source Circuit Breakers |
4 H-SiC | Silicon Carbide Substrate, Crystal Structure 4H |
References
- Purgat, P.; Shah, S.; van der Blij, N.; Qin, Z.; Bauer, P. Design criteria of solid-state circuit breaker for low-voltage microgrids. IET Power Electron. 2021, 14, 1284–1299. [Google Scholar] [CrossRef]
- Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M.; Skrlec, D. Advanced LVDC Electrical Power Architectures and Microgrids: A step toward a new generation of power distribution networks. IEEE Electrif. Mag. 2014, 2, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Meghwani, A.; Srivastava, S.C.; Chakrabarti, S. A Non-unit Protection Scheme for DC Microgrid Based on Local Measurements. IEEE Trans. Power Deliv. 2017, 32, 172–181. [Google Scholar] [CrossRef]
- Bayati, N.; Hajizadeh, A.; Soltani, M. Impact of Faults and Protection Methods on DC Microgrids Operation. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, D.; Tzelepis, D.; Dyśko, A. Protection of Microgrids With High Amounts of Renewables: Challenges and Solutions. In Proceedings of the 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania, 3–6 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, F.; Meng, C.; Yang, Y.; Sun, C.; Ji, C.; Chen, Y.; Wei, W.; Qiu, H.; Yang, G. Advantages and challenges of DC microgrid for commercial building a case study from Xiamen university DC microgrid. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 355–358. [Google Scholar] [CrossRef]
- Mackay, L.; van der Blij, N.H.; Ramirez-Elizondo, L.; Bauer, P. Toward the Universal DC Distribution System. Electr. Power Compon. Syst. 2017, 45, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Emhemed, A.A.S.; Fong, K.; Fletcher, S.; Burt, G.M. Validation of Fast and Selective Protection Scheme for an LVDC Distribution Network. IEEE Trans. Power Deliv. 2017, 32, 1432–1440. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, A.A.; Wakode, S.A.; Deshmukh, R.R.; Ballal, M.S.; Suryawanshi, H.M.; Mishra, M.K.; Kumar, S. A Brief Review on DC Microgrid Protection. In Proceedings of the 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC), Nagpur, India, 25–26 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yaqobi, M.A.; Matayoshi, H.; Danish, M.S.S.; Lotfy, M.E.; Howlader, A.M.; Tomonobu, S. Low-Voltage Solid-State DC Breaker for Fault Protection Applications in Isolated DC Microgrid Cluster. Appl. Sci. 2019, 9, 723. [Google Scholar] [CrossRef] [Green Version]
- Augustine, S.; Quiroz, J.E.; Reno, M.J.; Brahma, S. DC Microgrid Protection: Review and Challenges; Technical Report; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 2018.
- Beheshtaein, S.; Savaghebi, M.; Vasquez, J.C.; Guerrero, J.M. Protection of AC and DC microgrids: Challenges, solutions and future trends. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 5253–5260. [Google Scholar] [CrossRef] [Green Version]
- Niewind, J.; Hemdan, N.G.; Klosinski, C.; Bösche, D.; Kurrat, M.; Gerdinand, F.; Meisner, J.; Passon, S. Operation and protection of 380V DC distribution systems. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Shen, Z.J.; Miao, Z.; Roshandeh, A.M. Solid-state circuit breakers for DC micrgrids: Current status and future trends. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 24–27 May 2015; pp. 228–233. [Google Scholar] [CrossRef]
- Shen, Z.J.; Miao, Z.; Roshandeh, A.M.; Moens, P.; Devleeschouwer, H.; Salih, A.; Padmanabhan, B.; Jeon, W. First experimental demonstration of solid-state circuit breaker (SSCB) using 650 V GaN-based monolithic bidirectional switch. In Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, Czech Republic, 12–16 June 2016; pp. 79–82. [Google Scholar] [CrossRef]
- Cuzner, R.M.; Venkataramanan, G. The Status of DC Micro-Grid Protection. In Proceedings of the 2008 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 29 September–3 October 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Park, J.D.; Candelaria, J. Fault Detection and Isolation in Low-Voltage DC-Bus Microgrid System. IEEE Trans. Power Deliv. 2013, 28, 779–787. [Google Scholar] [CrossRef]
- Bayati, N.; Baghaee, H.R.; Hajizadeh, A.; Soltani, M. A Fuse Saving Scheme for DC Microgrids With High Penetration of Renewable Energy Resources. IEEE Access 2020, 8, 137407–137417. [Google Scholar] [CrossRef]
- Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, B.; Mauthe, G.; Ruoss, E.; Lips, H.; Porter, J.; Vithayathil, J. Development of a 500 kV Airblast HVDC Circuit Breaker. IEEE Trans. Power Appar. Syst. 1985, PAS-104, 2460–2466. [Google Scholar] [CrossRef]
- Beheshtaein, S.; Cuzner, R.M.; Forouzesh, M.; Savaghebi, M.; Guerrero, J.M. DC Microgrid Protection: A Comprehensive Review. IEEE J. Emerg. Sel. Top. Power Electron. 2019. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, K.; Song, X.; Huang, A.Q. Comparative study on the turn-off capability of multiple Si and SiC power devices. In Proceedings of the 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, USA, 30 October–1 November 2017; pp. 295–299. [Google Scholar] [CrossRef]
- Meyer, C.; Kowal, M.; De Doncker, R. Circuit breaker concepts for future high-power DC-applications. In Proceedings of the Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, Hong Kong, China, 2–6 October 2005; Volume 2, pp. 860–866. [Google Scholar] [CrossRef]
- Sanzad Lumen, S.M.; Kannan, R.; Yahaya, N.Z. DC Circuit Breaker: A Comprehensive Review of solid-state Topologies. In Proceedings of the 2020 IEEE International Conference on Power and Energy (PECon), Penang, Malaysia, 7–8 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Srivastava, C.; Tripathy, M. DC microgrid protection issues and schemes: A critical review. Renew. Sustain. Energy Rev. 2021, 151, 111546. [Google Scholar] [CrossRef]
- Javed, W.; Chen, D. Low Voltage DC Microgrid Protection System—A Review. In Proceedings of the 2018 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK, 4–7 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, L.; Tai, N.; Huang, W. A review on protection of DC microgrids. J. Mod. Power Syst. Clean Energy 2018, 6, 1113–1127. [Google Scholar] [CrossRef] [Green Version]
- Jayamaha, D.; Lidula, N.; Rajapakse, A. Protection and grounding methods in DC microgrids: Comprehensive review and analysis. Renew. Sustain. Energy Rev. 2020, 120, 109631. [Google Scholar] [CrossRef]
- Dagar, A.; Gupta, P.; Niranjan, V. Microgrid protection: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111401. [Google Scholar] [CrossRef]
- Patel, V.; Patel, V. A comprehensive review: AC & DC Microgrid Protection. In Proceedings of the 2020 21st National Power Systems Conference (NPSC), Gandhinagar, India, 17–19 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Bayati, N.; Hajizadeh, A.; Soltani, M. Protection in DC microgrids: A comparative review. IET Digit. Libr. J. Mag. 2018, 1, 66–75. [Google Scholar] [CrossRef]
- Li, C.; Rakhra, P.; Norman, P.; Burt, G.; Clarkson, P. Metrology requirements of state-of-the-art protection schemes for DC microgrids. In Proceedings of the 14th International Conference on Developments in Power System Protection (DPSP 2018), Belfast, UK, 7–10 March 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Almutairy, I. Solid-state circuit breaker protection devices for DC microgrid in review. In Proceedings of the 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), Ras Al Khaimah, United Arab Emirates, 6–8 December 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Rodrigues, R.; Du, Y.; Antoniazzi, A.; Cairoli, P. A Review of Solid-State Circuit Breakers. IEEE Trans. Power Electron. 2021, 36, 364–377. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Tao, H.; Zhou, Q.; Li, Z.; Zhang, B. Design and Experimental Verification of an Efficient SSCB Based on CS-MCT. IEEE Trans. Power Electron. 2020, 35, 11682–11693. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, E.; Chen, F.; Vasquez, J.C.; Guerrero, J.M.; Burgos, R.; Boroyevich, D. Voltage-Level Selection of Future Two-Level LVdc Distribution Grids: A Compromise Between Grid Compatibiliy, Safety, and Efficiency. IEEE Electrif. Mag. 2016, 4, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.C.; Ukil, A.; Yeap, Y.M. Short-circuit protection for MV & LVDC grid. In Proceedings of the 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 21–23 November 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Wan, M.; Dong, R.; Yang, J.; Xu, Z.; Zhang, B.; He, K.; Li, W. Fault Mechanism and Protection Strategy for DC Micro-grid. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 2597–2602. [Google Scholar] [CrossRef]
- Bui, D.M.; Chen, S.L.; Wu, C.H.; Lien, K.Y.; Huang, C.H.; Jen, K.K. Review on protection coordination strategies and development of an effective protection coordination system for DC microgrid. In Proceedings of the 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 21–23 November 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Liu, F.; Liu, W.; Zha, X.; Yang, H.; Feng, K. Solid-State Circuit Breaker Snubber Design for Transient Overvoltage Suppression at Bus Fault Interruption in Low-Voltage DC Microgrid. IEEE Trans. Power Electron. 2017, 32, 3007–3021. [Google Scholar] [CrossRef]
- Palaniappan, K.; Sedano, W.; Vygoder, M.; Hoeft, N.; Cuzner, R.; Shen, Z.J. Short-Circuit Fault Discrimination Using SiC JFET-Based Self-Powered Solid-State Circuit Breakers in a Residential DC Community Microgrid. IEEE Trans. Ind. Appl. 2020, 56, 3466–3476. [Google Scholar] [CrossRef]
- Peng, C.; Huang, A.Q. A protection scheme against DC faults VSC based DC systems with bus capacitors. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 14–17 June 2014; pp. 3423–3428. [Google Scholar] [CrossRef]
- Salomonsson, D.; Soder, L.; Sannino, A. Protection of Low-Voltage DC Microgrids. IEEE Trans. Power Deliv. 2009, 24, 1045–1053. [Google Scholar] [CrossRef]
- Cuzner, R.; MacFarlin, D.; Clinger, D.; Rumney, M.; Castles, G. Circuit breaker protection considerations in power converter-fed DC Systems. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium, Baltimore, MD, USA, 20–22 April 2009; pp. 360–367. [Google Scholar] [CrossRef]
- Doan, D.R. Arc Flash Calculations for Exposures to DC Systems. IEEE Trans. Ind. Appl. 2010, 46, 2299–2302. [Google Scholar] [CrossRef]
- Bahman, A.S.; Iannuzzo, F.; Holmgaard, T.; Nielsen, R.; Blaabjerg, F. Reliability-oriented environmental thermal stress analysis of fuses in power electronics. Microelectron. Reliab. 2017, 76, 25–30. [Google Scholar] [CrossRef]
- Westrom, A.; Crooks, W.; Narancic, V. Current Limiting Fuses-A Comparative Evaluation. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 1870–1877. [Google Scholar] [CrossRef]
- Wright, A.; Newbery, P.G. Electric Fuses; IET: London, UK, 2004; Volume 49. [Google Scholar]
- Fletcher, S.D.A.; Norman, P.J.; Fong, K.; Galloway, S.J.; Burt, G.M. High-Speed Differential Protection for Smart DC Distribution Systems. IEEE Trans. Smart Grid 2014, 5, 2610–2617. [Google Scholar] [CrossRef] [Green Version]
- IEEE. Recommended Practice for the Design of DC Power Systems for Stationary Applications; IEEE Std 946-2020 (Revision of IEEE Std 946-2004); IEEE: Piscataway, NJ, USA, 2020; pp. 1–74. [Google Scholar] [CrossRef]
- Salomonsson, D.; Sannino, A. Load modelling for steady-state and transient analysis of low-voltage DC systems. IET Electr. Power Appl. 2007, 1, 690–696. [Google Scholar] [CrossRef]
- Ravyts, S.; Broeck, G.V.D.; Hallemans, L.; Vecchia, M.D.; Driesen, J. Fuse-Based Short-Circuit Protection of Converter Controlled Low-Voltage DC Grids. IEEE Trans. Power Electron. 2020, 35, 11694–11706. [Google Scholar] [CrossRef]
- Iturregi, A.; Torres, E.; Zamora, I.; Abarrategui, O. High voltage circuit breakers: SF6 vs. vacuum. In Proceedings of the 7nd International Conference Renewable Energies and Power Quality, Valencia, Spain, 10–12 April 2009; pp. 1–6. [Google Scholar]
- Krstic, S.; Wellner, E.L.; Bendre, A.R.; Semenov, B. Circuit breaker technologies for advanced ship power systems. In Proceedings of the 2007 IEEE Electric Ship Technologies Symposium, Arlington, VA, USA, 3–6 August 2007; pp. 201–208. [Google Scholar]
- Shi, Z.; Jia, S.; Ma, M.; Song, X.; Yang, H.; Liu, C.; Wang, L. Investigation on DC interruption based on artificial current zero of vacuum switch. In Proceedings of the 24th ISDEIV 2010, Braunschweig, Germany, 30 August–3 September 2010; pp. 158–161. [Google Scholar]
- Shen, Z.J.; Sabui, G.; Miao, Z.; Shuai, Z. Wide-Bandgap Solid-State Circuit Breakers for DC Power Systems: Device and Circuit Considerations. IEEE Trans. Electron Devices 2015, 62, 294–300. [Google Scholar] [CrossRef]
- Zhou, Y.; Na, R.; Feng, Y.; Shen, Z.J. GaN-Based Tri-Mode Intelligent Solid-State Circuit Breakers for Low-Voltage DC Power Networks. IEEE Trans. Power Electron. 2021, 36, 6596–6607. [Google Scholar] [CrossRef]
- Corzine, K.A.; Ashton, R.W. A New Z-Source DC Circuit Breaker. IEEE Trans. Power Electron. 2012, 27, 2796–2804. [Google Scholar] [CrossRef]
- Cairoli, P.; Qi, L.; Tschida, C.; Ramanan, V.R.; Raciti, L.; Antoniazzi, A. High Current solid-state Circuit Breaker for DC Shipboard Power Systems. In Proceedings of the 2019 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 13–16 August 2019; pp. 468–476. [Google Scholar] [CrossRef]
- Haugan, Y.; Rygg, E.; Hanne; Skjellnes, A.; Barstad, L. Discriminación en los sistemas de distribución de CC marinos y en alta mar. In Proceedings of the 2016 IEEE 17th Workshop on Control and Modelling for Power Electronics (COMPEL), Trondheim, Norway, 27–30 June 2016. [Google Scholar] [CrossRef]
- Beheshtaein, S.; Cuzner, R. A New Y- IGCT-based DC Circuit Breaker for NASA N3-X Spacecraft. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 1215–1218. [Google Scholar] [CrossRef]
- Mantooth, H.A.; Saadeh, O.; Johnson, E.; Balda, J.C.; Ang, S.S.; Lostetter, A.B.; Schupbach, R.M. Solid-state fault current limiters: Silicon versus silicon carbide. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Ganhao, Z. Study on DC Circuit Breaker. In Proceedings of the 2014 Fifth International Conference on Intelligent Systems Design and Engineering Applications, Hunan, China, 15–16 June 2014; pp. 942–945. [Google Scholar] [CrossRef]
- Pei, X.; Cwikowski, O.; Vilchis-Rodriguez, D.S.; Barnes, M.; Smith, A.C.; Shuttleworth, R. A review of technologies for MVDC circuit breakers. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 3799–3805. [Google Scholar] [CrossRef]
- Baliga, B. Power semiconductor device figure of merit for high-frequency applications. IEEE Electron. Device Lett. 1989, 10, 455–457. [Google Scholar] [CrossRef]
- Urciuoli, D.P.; Veliadis, V.; Ha, H.C.; Lubomirsky, V. Demonstration of a 600-V, 60-A, bidirectional silicon carbide solid-state circuit breaker. In Proceedings of the 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 March 2011; pp. 354–358. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Woodley, R.; Song, X.; Sen, S.; Zhao, X.; Huang, A.Q. High current medium voltage solid-state circuit breaker using paralleled 15 kV SiC ETO. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 1706–1709. [Google Scholar] [CrossRef]
- Marroqui, D.; Garrigos, A.; Blanes, J.M.; Gutierrez, R. Photovoltaic-Driven SiC MOSFET Circuit Breaker with Latching and Current Limiting Capability. Energies 2019, 12, 4585. [Google Scholar] [CrossRef] [Green Version]
- Urciuoli, D.P.; Ibitayo, D.; Koebke, G.; Ovrebo, G.; Green, R. A compact 100-A, 850-V, silicon carbide solid-state DC circuit breaker. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Tanaka, Y.; Fukui, A.; Yamasaki, M.; Ohashi, H. SiC-SIT Circuit Breakers With Controllable Interruption Voltage for 400-V DC Distribution Systems. IEEE Trans. Power Electron. 2014, 29, 2597–2605. [Google Scholar] [CrossRef]
- Millán, J.; Godignon, P.; Perpiñà, X.; Pérez-Tomás, A.; Rebollo, J. A Survey of Wide Bandgap Power Semiconductor Devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Martin, W.A.; Deng, C.; Fiddiansyah, D.; Balda, J.C. Investigation of low-voltage solid-state DC breaker configurations for DC microgrid applications. In Proceedings of the 2016 IEEE International Telecommunications Energy Conference (INTELEC), Austin, TX, USA, 23–27 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Schmerda, R.; Cuzner, R.; Clark, R.; Nowak, D.; Bunzel, S. Shipboard Solid-State Protection: Overview and Applications. IEEE Electrif. Mag. 2013, 1, 32–39. [Google Scholar] [CrossRef]
- Farhadi, M.; Mohammed, O.A. Protection of multi-terminal and distributed DC systems: Design challenges and techniques. Electr. Power Syst. Res. 2017, 143, 715–727. [Google Scholar] [CrossRef]
- Sujod, M.Z.; Sakata, H. Simulación de conmutación de Si-GTO, SiC-GTO y Power MOSFET. In Proceedings of the 2006 IEEE International Power and Energy Conference, Putrajaya, Malaysia, 28–29 November 2006. [Google Scholar] [CrossRef]
- Tracy, L.; Sekhar, P.K. Design and Testing of a Low Voltage Solid-State Circuit Breaker for a DC Distribution System. Energies 2020, 13, 338. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Wang, G.; Zeng, D.; Li, H.; Chao, H. A Thyristor Full-Bridge-Based DC Circuit Breaker. IEEE Trans. Power Electron. 2020, 35, 1111–1123. [Google Scholar] [CrossRef]
- Iwamuro, N.; Laska, T. IGBT History, State-of-the-Art, and Future Prospects. IEEE Trans. Electron. Devices 2017, 64, 741–752. [Google Scholar] [CrossRef]
- Singh, S.; Chaudhary, T.; Khanna, G. Recent Advancements in Wide Band Semiconductors (SiC and GaN) Technology for Future Devices. Silicon 2021. [Google Scholar] [CrossRef]
- Roccaforte, F.; Fiorenza, P.; Greco, G.; Lo Nigro, R.; Giannazzo, F.; Iucolano, F.; Saggio, M. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 2018, 187–188, 66–77. [Google Scholar] [CrossRef]
- Lelis, A.J.; Green, R.; Habersat, D.B.; El, M. Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs. IEEE Trans. Electron. Devices 2015, 62, 316–323. [Google Scholar] [CrossRef]
- Paskova, T.; Hanser, D.A.; Evans, K.R. GaN Substrates for III-Nitride Devices. Proc. IEEE 2010, 98, 1324–1338. [Google Scholar] [CrossRef] [Green Version]
- Wolfspeed, C. Wolfspeed. Available online: https://www.wolfspeed.com/ (accessed on 4 October 2021).
- Palmour, J.W.; Zhang, J.Q.; Das, M.K.; Callanan, R.; Agarwal, A.K.; Grider, D.E. SiC power devices for Smart Grid systems. In Proceedings of the 2010 International Power Electronics Conference—ECCE ASIA, Sapporo, Japan, 21–24 June 2010; pp. 1006–1013. [Google Scholar] [CrossRef]
- Chen, W.; Tao, H.; Liu, C.; Xia, Y.; Shi, Y.; Liu, Y.; Liu, C.; Liu, J.; Zhou, Q.; Li, Z.; et al. Evaluation of CS-MCT in DC Solid-State Circuit Breaker Applications. IEEE Trans. Ind. Appl. 2018, 54, 5465–5473. [Google Scholar] [CrossRef]
- Keshavarzi, D.; Farjah, E.; Ghanbari, T. Hybrid DC Circuit Breaker and Fault Current Limiter With Optional Interruption Capability. IEEE Trans. Power Electron. 2018, 33, 2330–2338. [Google Scholar] [CrossRef]
- I, V.R.; Banavath, S.N.; Thamballa, S. Modified Z-Source DC Circuit Breaker With Enhanced Performance During Commissioning and Reclosing. IEEE Trans. Power Electron. 2022, 37, 910–919. [Google Scholar] [CrossRef]
- Maqsood, A.; Corzine, K. Z-source Dc circuit breakers with coupled inductors. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 1905–1909. [Google Scholar] [CrossRef]
- Maqsood, A.; Corzine, K. Application of a new coupled-inductor based dc circuit breaker. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1390–1393. [Google Scholar] [CrossRef]
- Maqsood, A.; Li, L.; Corzine, K.A. Low-voltage Dc testbed design for a Z-source breaker based protection scheme. In Proceedings of the 2016 Clemson University Power Systems Conference (PSC), Clemson, SC, USA, 8–11 March 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Savaliya, S.G.; Fernandes, B.G. Modified bi-directional Z-source breaker with reclosing and rebreaking capabilities. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 3497–3504. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Wu, X.; Xie, R.; Zhang, Z.; Wang, H. A Novel Solid-State Circuit Breaker for DC Microgrid System. In Proceedings of the 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK, 7–9 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, J.; Ye, S.; Liu, C.; Zhang, D. A T-Source Circuit Breaker for DC Microgrid Protection. IEEE Trans. Ind. Electron. 2021, 68, 2310–2320. [Google Scholar] [CrossRef]
- Diao, X.; Liu, F.; Song, Y.; Zhuang, M.X.Y.; Zhu, W.; Zha, X. A New Efficient Bidirectional T-source Circuit Breaker for Flexible DC Distribution Networks. IEEE J. Emerg. Sel. Top. Power Electron. 2020. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Liu, C.; Sun, R.; Li, Z.; Zhang, B. An Efficient and Reliable Solid-State Circuit Breaker Based on Mixture Device. IEEE Trans. Power Electron. 2021, 36, 9767–9771. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, Z.; Zhang, X.; Wei, T.; Lyu, G.; Qu, L.; Huang, Y.; Zeng, R. Analysis and Experiments for IGBT, IEGT, and IGCT in Hybrid DC Circuit Breaker. IEEE Trans. Ind. Electron. 2018, 65, 2883–2892. [Google Scholar] [CrossRef]
- Xu, C.; Damle, T.; Graber, L. A Survey on Mechanical Switches for Hybrid Circuit Breakers. In Proceedings of the 2019 IEEE Power Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Shukla, A.; Demetriades, G.D. A Survey on Hybrid Circuit-Breaker Topologies. IEEE Trans. Power Deliv. 2015, 30, 627–641. [Google Scholar] [CrossRef]
- Bose, B.K. Energy, environment, and advances in power electronics. In Proceedings of the 2000 IEEE International Symposium on Industrial Electronics, San Francisco, CA, USA, 10 May 2000; pp. TU1–TU14. [Google Scholar] [CrossRef]
- Schmerda, R.; Krstic, S.; Wellner, E.; Bendre, A. IGCTs vs. IGBTs for circuit breakers in advanced ship electrical systems. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium, Baltimore, MD, USA, 20–22 April 2009; pp. 400–405. [Google Scholar] [CrossRef]
- Muazu, H.; Thomas, S. Overview of solid-state circuit breaker technology and some recent experiment prototypes. In Proceedings of the 2017 13th International Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, 28–29 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Zhang, H.; Xu, X.; Zhang, B. Evaluation of an Effective DC solid-state Circuit Breaker Based on CS-MCT. In Proceedings of the 2021 5th IEEE Electron Devices Technology Manufacturing Conference (EDTM), Chengdu, China, 9–12 March 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Miao, Z.; Sabui, G.; Roshandeh, A.M.; Shen, Z.J. Design and Analysis of DC Solid-State Circuit Breakers Using SiC JFETs. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 863–873. [Google Scholar] [CrossRef]
- Chen, N.; Chimento, F.; Nawaz, M.; Wang, L. Dynamic Characterization of Parallel-Connected High-Power IGBT Modules. IEEE Trans. Ind. Appl. 2015, 51, 539–546. [Google Scholar] [CrossRef]
Material | Bandgap Energy (eV) | Electron Mobility (µe) | Hole Mobility (µh) | Electric Breakdown Field (Ec) |
---|---|---|---|---|
Germanium | 0.7 | 3900 | 1900 | 1.0 × |
Silicon | 1.1 | 1500 | 450 | 3.0 × |
Gallium Arsenide | 1.4 | 8500 | 400 | 4.0 × |
Arsenide Silicon | 3.3 | 1000 | 120 | 2.8 × |
Gallium Nitrite | 3.4 | 900 | 150 | 3.3 × |
Gallium Oxide | 4.85 | 200 | 20 | 5.2 × |
Diamond | 5.5 | 2200 | 1600 | 1.0 × |
Switch Type | Sic MOSFET IMW120R0,60M1H | IGBT 1KW25N120T2 | SCR TN4050-12PI | CS-MCT |
---|---|---|---|---|
Rated Current | 26 A@100 C | 25 A@110 C | 25 A@82.5 C | 25 A@110 C |
BV | 1200 V | 1200 V | 1200 V | 1348 V |
Von (25 A/25 C) | 1.5 V | 1.7 V | 1.3 V | 1.1 V |
Conduction Loss | 37.5 W | 42.5 W | 32.5 W | 27.5 W |
Maximun di/dt (A/s) | - | - | Hundreds | Ten of thousand |
Control-Type | Voltage | Voltage | Current | Voltaje |
Driver | Simple | Simple | Complex | Simple |
Technology | Inmature | Mature | Mature | Mature |
Type | Advantages | Disadvantages | Operation Speed (ms) | Ref. N° | |
---|---|---|---|---|---|
Fuses | Low Cost | Not able to distinguish between a transient and a permanent fault. Fuse need to be replaced for successful operation | <100 | [21] | |
MCBs | Low cost. Low contact resistance. Very low power losses. | Slow operating speed. Limited current interruption capability. Low life time. | <60 | [21] [92] [20] [64] | |
SSCBs | Si | Fast operation. No arc, no sound. No gas emissions. Very long lifetime. | High on-state losses. Relatively high cost. Big size due to heatsink. | <0.1 | [21] [92] [20] [31] |
SiC-GaN | Compared with Si SSCBs: Higher speed. Higher thermal conductivity. smaller heat sinks. Withstand higher voltages. Thinner for the same voltage. very low switching losses. | Very expensive. Still evolving towards its maturity. | <0.1 | [78] [103] | |
HCBs | Low power losses. No arcing on mechanical contacts. Relative fast operation speed. | Complex technology. Current commutation relies on the arc voltage. Very expensive | <(5–30) | [94] | |
ZSCBs | Fast operation. Natural commutation. Control circuit simplified. Cascaded breaker coordination is inherently automatic. Relative lower cost. Fast operation. | Fault magnitude needs to be higher for tripping protection. Can not provide prolonged protection. | <0.1 | [58] [87] [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perea-Mena, B.; Valencia-Velasquez, J.A.; López-Lezama, J.M.; Cano-Quintero, J.B.; Muñoz-Galeano, N. Circuit Breakers in Low- and Medium-Voltage DC Microgrids for Protection against Short-Circuit Electrical Faults: Evolution and Future Challenges. Appl. Sci. 2022, 12, 15. https://doi.org/10.3390/app12010015
Perea-Mena B, Valencia-Velasquez JA, López-Lezama JM, Cano-Quintero JB, Muñoz-Galeano N. Circuit Breakers in Low- and Medium-Voltage DC Microgrids for Protection against Short-Circuit Electrical Faults: Evolution and Future Challenges. Applied Sciences. 2022; 12(1):15. https://doi.org/10.3390/app12010015
Chicago/Turabian StylePerea-Mena, Bayron, Jaime A. Valencia-Velasquez, Jesús M. López-Lezama, Juan B. Cano-Quintero, and Nicolás Muñoz-Galeano. 2022. "Circuit Breakers in Low- and Medium-Voltage DC Microgrids for Protection against Short-Circuit Electrical Faults: Evolution and Future Challenges" Applied Sciences 12, no. 1: 15. https://doi.org/10.3390/app12010015
APA StylePerea-Mena, B., Valencia-Velasquez, J. A., López-Lezama, J. M., Cano-Quintero, J. B., & Muñoz-Galeano, N. (2022). Circuit Breakers in Low- and Medium-Voltage DC Microgrids for Protection against Short-Circuit Electrical Faults: Evolution and Future Challenges. Applied Sciences, 12(1), 15. https://doi.org/10.3390/app12010015