Theoretical and Experimental Analysis for Cleaning Ice Cores from EstisolTM 140 Drill Liquid
Abstract
:Featured Application
Abstract
1. Introduction
2. Theoretical Section and Calculations
2.1. General Theoretical Aspects
2.2. Properties of Ice and Drilling Fluids
2.3. Evaluation of Ice Sublimation and Fluid Evaporation
3. Experimental Testing
3.1. Ice Core Cleaning
3.2. Longlasting Preservation
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheldon, S.G.; Popp, T.J.; Hansen, S.B.; Steffensen, J.P. Promising new borehole liquids for ice-core drilling on the East Antarctic high plateau. Ann. Glaciol. 2014, 55, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Talalay, P.G. Drilling Fluids for Deep Coring in Central Antarctica; Technical Report PRC 12-01; Polar Research Center, Jilin University: Jilin, China, 2011. [Google Scholar]
- Talalay, P.; Hu, Z.; Xu, H.; Yu, D.; Han, L.; Han, J.; Wang, L. Environmental considerations of low temperature drilling fluids. Ann. Glaciol. 2014, 55, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Triest, J.; Alemany, O. Drill fluid selection for the SUBGLACIOR probe: A review of silicone oil as a drill fluid. Ann. Glaciol. 2014, 55, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Han, L.; Cao, P.; Guo, M.; Han, J.; Yu, D.; Talalay, P. Low-molecular-weight, fatty-acid esters as potential low-temperature drilling fluids for ice coring. Ann. Glaciol. 2014, 55, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Jambon-Puillet, E.; Shahidzadeh, N.; Bonn, D. Singular sublimation of ice and snow crystals. Nat. Commun. 2018, 9, 4191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eames, I.W.; Marr, N.J.; Sabir, H. The evaporation coefficient of water: A review. Int. J. Heat Mass Transf. 1997, 40, 2963–2973. [Google Scholar] [CrossRef]
- Rahimi, P.; Ward, C.A. Kinetics of evaporation: Statistical rate theory approach. Int. J. Thermodyn. 2005, 8, 1–14. [Google Scholar]
- Hertz, H. On the Evaporation of Liquids, Especially Mercury, in Vacuo. Ann. Phys. 1882, 17, 178–193. [Google Scholar]
- Knudsen, M. Maximum Rate of Vaporization of Mercury. Ann. Phys. 1915, 47, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Penner, S.S. On the kinetics of evaporation. J. Phys. Chem. 1952, 56, 475–479. [Google Scholar] [CrossRef]
- Schrage, R.W. A Theoretical Study of Interphase Mass Transfer; Columbia University Press: New York, NY, USA, 1953. [Google Scholar]
- Labuntsov, D.A.; Kryukov, A.P. Analysis of intensive evaporation and condensation. Int. J. Heat Mass Transf. 1979, 22, 989–1002. [Google Scholar] [CrossRef]
- Ytrehus, T. Molecular-flow effects in evaporation and condensation at interfaces. Multiph. Sci. Technol. 1997, 9, 205–327. [Google Scholar] [CrossRef]
- Rose, J.W. On interphase matter transfer, the condensation coefficient and dropwise condensation. Proc. R. Soc. Lond. A 1987, 411, 305–311. [Google Scholar]
- Rose, J.W. Accurate approximate equations for intensive sub-sonic evaporation. Int. J. Heat Mass Transf. 2000, 43, 3869–3875. [Google Scholar] [CrossRef]
- Ward, C.A.; Duan, F. Turbulent transition of thermocapillary flow induced by water evaporation. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2004, 69, 056308. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.M.; Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 2005, 131, 1539–1565. [Google Scholar] [CrossRef]
- Warming, E.; Svensson, A.; Vallelonga, P.; Bigler, M. Instruments and Methods A technique for continuous detection of drill liquid in ice cores. J. Glaciol. 2013, 59, 503–506. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enrichi, F.; Dahl-Jensen, D.; Steffensen, J.P.; Barbante, C. Theoretical and Experimental Analysis for Cleaning Ice Cores from EstisolTM 140 Drill Liquid. Appl. Sci. 2021, 11, 3830. https://doi.org/10.3390/app11093830
Enrichi F, Dahl-Jensen D, Steffensen JP, Barbante C. Theoretical and Experimental Analysis for Cleaning Ice Cores from EstisolTM 140 Drill Liquid. Applied Sciences. 2021; 11(9):3830. https://doi.org/10.3390/app11093830
Chicago/Turabian StyleEnrichi, Francesco, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, and Carlo Barbante. 2021. "Theoretical and Experimental Analysis for Cleaning Ice Cores from EstisolTM 140 Drill Liquid" Applied Sciences 11, no. 9: 3830. https://doi.org/10.3390/app11093830
APA StyleEnrichi, F., Dahl-Jensen, D., Steffensen, J. P., & Barbante, C. (2021). Theoretical and Experimental Analysis for Cleaning Ice Cores from EstisolTM 140 Drill Liquid. Applied Sciences, 11(9), 3830. https://doi.org/10.3390/app11093830