Evaluation of the Radiological and Chemical Risk for Public Health from Flour Sample Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Gamma Spectrometry Analysis and Radiological Hazard Effects Assessment
2.3. ICP-MS and ICP-OES Analysis
2.4. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Radioactivity Analysis
3.2. The Annual Effective Dose for Food Ingestion
3.3. Heavy Metal Analysis
3.4. Elemental and Chemometric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caridi, F.; Marguccio, S.; D’Agostino, M.; Belvedere, A.; Belmusto, G. Natural radioactivity and metal contamination of river sediments in the Calabria region, south of Italy. Eur. Phys. J. Plus 2016, 131, 1–10. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Marguccio, S.; Belvedere, A.; Belmusto, G.; Marcianò, G.; Sabatino, G.; Mottese, A. Radioactivity, granulometric and elemental analysis of river sediments samples from the coast of Calabria, south of Italy. Eur. Phys. J. Plus 2016, 131, 1–8. [Google Scholar] [CrossRef]
- Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B.; Senthilkumar, G.; Eswaran, P.; Rajalakshmi, A. Natural radioactivity in soil samples of Yelagiri Hills, Tamil Nadu, India and the associated radiation hazards. Radiat. Phys. Chem. 2012, 81, 1789–1795. [Google Scholar] [CrossRef]
- Fadlalla, H.E. Radioactivity Levels of Basic Foodstuffs Anddose Estimates in Sudan. Master’s Thesis, University of Khartoum, Khartoum, Sudan, 2005; p. 60. [Google Scholar]
- Mlwilo, N.A.; Mohammed, N.K.; Spyrou, N.M. Radioactivity levels of staple foodstuffs and dose estimates for most of the Tanzanian population. J. Radiol. Prot. 2007, 27, 471–480. [Google Scholar] [CrossRef]
- Caridi, F.; Messina, M.; Belvedere, A.; D’Agostino, M.; Marguccio, S.; Settineri, L.; Belmusto, G. Food Salt Characterization in Terms of Radioactivity and Metals Contamination. Appl. Sci. 2019, 9, 2882. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, T.; Mishra, U. Measurement of natural radioactivity levels in Indian foodstuffs by gamma spectrometry. Int. J. Radiat. Appl. Instrum. 1989, 40, 723–726. [Google Scholar] [CrossRef]
- Júnior, J.A.S.; Cardoso, J.J.R.F.; Silva, C.M. Radioactivity levels of basic foodstuffs and dose estimates in Sudan. J. Radioanal. Nucl. Chem. 2006, 269, 451–455. [Google Scholar] [CrossRef]
- Caridi, F.; Pappaterra, D.; Belmusto, G.; Messina, M.; Belvedere, A.; D’Agostino, M.; Settineri, L.; Agostino, D. Radioactivity and Heavy Metals Concentration in Italian (Calabrian) DOC Wines. Appl. Sci. 2019, 9, 4584. [Google Scholar] [CrossRef] [Green Version]
- Albergamo, A.; Bua, G.D.; Rotondo, A.; Bartolomeo, G.; Annuario, G.; Costa, R.; Dugo, G. Transfer of major and trace elements along the “farm-to-fork” chain of different whole grain products. J. Food Compos. Anal. 2018, 66, 212–220. [Google Scholar] [CrossRef]
- Di Bella, G.; Naccari, C.; Bua, G.D.; Rastrelli, L.; Lo Turco, V.; Potortì, A.G.; Dugo, G. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 2016, 67, 239–248. [Google Scholar] [CrossRef]
- Sette, S.; D’Addezio, L.; Piccinelli, R.; Hopkins, S.; Le Donne, C.; Ferrari, M.; Mistura, L.; Turrini, A. Intakes of whole grain in an Italian sample of children, adolescents and adults. Eur. J. Nutr. 2015, 56, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Dona, A.; Dourakis, S.; Papadimitropoulos, B.; Maravelias, C.; Koutselinis, A. Flour Contamination as a Source of Lead Intoxication. J. Toxicol. Clin. Toxicol. 1999, 37, 109–112. [Google Scholar] [CrossRef]
- Caridi, F.; Marguccio, S.; Belvedere, A.; D’Agostino, M.; Belmusto, G. The Natural Radioactivity in Food: A Comparison Between Different Feeding Regimes. Curr. Nutr. Food Sci. 2019, 15, 493–499. [Google Scholar] [CrossRef]
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Ravenda, P.; Gaetano, A.D.; Dugo, G. Fingerprint of PGI Mantova Cucumis melo by ICP-MS and Chemometric Analysis. Curr. Nutr. Food Sci. 2020, 17, 94–104. [Google Scholar] [CrossRef]
- Acri, G.; Sansotta, C.; Ruello, E.V.; Denaro, L.; Salmeri, F.M.; Testagrossa, B. The Use of Time Domain NMR in Food Analysis: A Review. Curr. Nutr. Food Sci. 2020, 16, 1–9. [Google Scholar] [CrossRef]
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud. Food Control. 2020, 110, 107004. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Belvedere, A.; Mottese, A.F. Multi-element Analysis and Geographical Origin Classification of Italian (Calabrian) Wines. Curr. Nutr. Food Sci. 2020, 16, 1259–1264. [Google Scholar] [CrossRef]
- Acri, G.; Testagrossa, B.; Vermiglio, G. FT-NIR analysis of different garlic cultivars. J. Food Meas. Charact. 2015, 10, 127–136. [Google Scholar] [CrossRef]
- Italian Legislation D.Lgs. 101/20. Available online: http://www.gminternational.net/en/legislative-decree-101-of-31-07-20-transposes-in-italy-the-directive-2013-597-euratom-on-the-controls-on-ionizing-radiation-which-is-the-impact/ (accessed on 18 April 2021).
- Gómez, M.; Gutkoski, L.C.; Bravo‐Núñez, Á. Understanding whole-wheat flour and its effect in breads: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3241–3265. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Alias, A.K.; Ariffin, F.; Mahmud, S. Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. Int. J. Food Prop. 2018, 21, 983–995. [Google Scholar] [CrossRef]
- Panasiti, I.; Costa, S.; Caminiti, L.; Crisafulli, G.; Pajno, G.B.; Pellegrino, S.; Testagrossa, B.; Acri, G. Association of wheat Allergy and Coeliac Disease Through Pediatric and Adult Age: A Review of Literature. Curr. Nutr. Food Sci. 2020, 16, 1–6. [Google Scholar] [CrossRef]
- Wu, T.; Wang, L.; Li, Y.; Qian, H.; Liu, L.; Tong, L.; Zhou, X.; Wang, L.; Zhou, S. Effect of milling methods on the properties of rice flour and gluten-free rice bread. LWT 2019, 108, 137–144. [Google Scholar] [CrossRef]
- Prasanna Priyantha Gunathilake, K.D.; Yalegama, C.; Kumara, A.A.N. Use of coconut flour as a source of protein and dietary fiber in wheat bread. Asian J. Food Agro-Ind. 2009, 2, 382–391. [Google Scholar]
- Martínez, M.L.; Marín, M.A.; Gili, R.D.; Penci, M.C.; Ribotta, P.D. Effect of defatted almond flour on cooking, chemical and sensorial properties of gluten-free fresh pasta. Int. J. Food Sci. Technol. 2017, 52, 2148–2155. [Google Scholar] [CrossRef]
- Littardi, P.; Paciulli, M.; Carini, E.; Rinaldi, M.; Rodolfi, M.; Chiavaro, E. Quality evaluation of chestnut flour addition on fresh pasta. LWT 2020, 126, 109303. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Barros, L.; Fernandes, A.; Ferreira, I.C.F.R.; Callejo, M.; Matallana-González, M.; Fernández-Ruiz, V.; Morales, P.; Carrillo, J.M. Potential Health Claims of Durum and Bread Wheat Flours as Functional Ingredients. Nutrients 2020, 12, 504. [Google Scholar] [CrossRef] [Green Version]
- Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A.; Unnikrishnan, V.S. Nutritional advantages of oats and opportunities for its processing as value added foods—A review. J. Food Sci. Technol. 2013, 52, 662–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwirtz, J.A.; Garcia-Casal, M.N. Processing maize flour and corn meal food products. Ann. N. Y. Acad. Sci. USA 2013, 1312, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Stępniewska, S.; Słowik, E.; Cacak-Pietrzak, G.; Romankiewicz, D.; Szafrańska, A.; Dziki, D. Prediction of rye flour baking quality based on parameters of swelling curve. Eur. Food Res. Technol. 2017, 244, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.L.; Fabani, M.P.; Baroni, M.V.; Huaman, R.N.M.; Ighani, M.; Maestri, D.M.; Wunderlin, D.; Tapia, A.; Feresin, G.E. Argentinian pistachio oil and flour: A potential novel approach of pistachio nut utilization. J. Food Sci. Technol. 2016, 53, 2260–2269. [Google Scholar] [CrossRef] [Green Version]
- Caridi, F.; D’Agostino, M.; Belvedere, A.; Marguccio, S.; Belmusto, G. Radon radioactivity in groundwater from the Calabria region, south of Italy. J. Instrum. 2016, 11, P05012. [Google Scholar] [CrossRef]
- Caridi, F.; Marguccio, S.; Durante, G.; Trozzo, R.; Fullone, F.; Belvedere, A.; D’Agostino, M.; Belmusto, G. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM. Eur. Phys. J. Plus 2017, 132, 56. [Google Scholar] [CrossRef]
- Caridi, F.; Santangelo, S.; Faggio, G.; Gnisci, A.; Messina, G.; Belmusto, G. Compositional and Mineralogical Analysis of Marine Sediments from Calabrian Selected Areas, Southern Italy. Int. J. Environ. Res. 2019, 13, 571–580. [Google Scholar] [CrossRef]
- Caridi, F.; Testagrossa, B.; Acri, G. Elemental composition and natural radioactivity of refractory materials. Environ. Earth Sci. 2021, 80, 1–6. [Google Scholar] [CrossRef]
- Caridi, F.; Messina, M.; D’Agostino, M. An investigation about natural radioactivity, hydrochemistry, and metal pollution in groundwater from Calabrian selected areas, southern Italy. Environ. Earth Sci. 2017, 76, 668. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Belvedere, A. Radioactivity in Calabrian (Southern Italy) Wild Boar Meat. Appl. Sci. 2020, 10, 3580. [Google Scholar] [CrossRef]
- Caridi, F.; Belvedere, A.; Agostino, M.D.; Marguccio, S.; Marino, G.; Messina, M.; Belmusto, G. An investigation on airborne particulate radioactivity, heavy metals and polycyclic aromatic hydrocarbons composition in Calabrian selected sites, Southern Italy. Indian J. Environ. Prot. 2019, 39, 321–326. [Google Scholar]
- Caridi, F.; D’Agostino, M. Evaluation of drinking water radioactivity content and radiological risk assessment: A new methodological approach. J. Instrum. 2020, 15, P10016. [Google Scholar] [CrossRef]
- Hassan, N.M.; Rasmussen, P.E.; Dabek-Zlotorzynska, E.; Celo, V.; Chen, H. Analysis of Environmental Samples Using Microwave-Assisted Acid Digestion and Inductively Coupled Plasma Mass Spectrometry: Maximizing Total Element Recoveries. Water Air Soil Pollut. 2007, 178, 323–334. [Google Scholar] [CrossRef]
- Bednar, A.; Kirgan, R.; Jones, W. Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC–ICP–MS. Anal. Chim. Acta 2009, 632, 27–34. [Google Scholar] [CrossRef]
- Thermo Fisher iCAP Q Operating Manual. Available online: https://vdocuments.mx/icap-q-operating-manual-thermo-fisher-scientific-us-assistance-thermo-fisher-scientific.html (accessed on 18 April 2021).
- Perkin Elmer Optima 2100 DV ICP-OES Spectrometer User Manual; Perkin Elmer: Waltham, MA, USA, 2012.
- Seifert, E. OriginPro 9.1: Scientific Data Analysis and Graphing Software—Software Review. J. Chem. Inf. Model. 2014, 54, 1552. [Google Scholar] [CrossRef] [PubMed]
- Caridi, F.; Di Bella, M.; Sabatino, G.; Belmusto, G.; Fede, M.R.; Romano, D.; Italiano, F.; Mottese, A.F. Assessment of Natural Radioactivity and Radiological Risks in River Sediments from Calabria (Southern Italy). Appl. Sci. 2021, 11, 1729. [Google Scholar] [CrossRef]
- Dulger, D.; Mete, M. Chestnut flour and applications of utilization. Int. J. Food Eng. Res. 2017, 3, 9–16. [Google Scholar]
- Araujo, R.G.O.; Macedo, S.M.; Korn, M.D.G.A.; Pimentel, M.F.; Bruns, R.E.; Ferreira, S.L.C. Mineral composition of wheat flour consumed in Brazilian cities. J. Braz. Chem. Soc. 2008, 19, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Italmopa I Nuovi Trend del Consumo di Pane in Italia; Fiera Internazionale Sigep & AB-Tech: Rimini, Italy, 2020.
- Frazzoli, R. I consumi alimentari extradomestici. Ind. Aliment. 2007, 46, 481–482. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation: Report to the General Assembly, with Scientific Annexes; UNSCEAR: Vienna, Austria, 2000; Volume I, ISBN 92-1-142238-8. [Google Scholar]
- Commission Regulation (EC) N. 1881/06. 2006. Available online: http://extwprlegs1.fao.org/docs/pdf/eur68134.pdf (accessed on 18 April 2021).
- Morris, E.D. Mineral Elements in Wheat, Flour, and Bread. Nutr. Rev. 2009, 22, 223. [Google Scholar] [CrossRef]
Sample ID | Sample Typology |
---|---|
S1 | Wholemeal flour |
S2 | Semolina flour |
S3 | Rice flour |
S4 | Coconut flour |
S5 | Almond flour |
S6 | Chestnut flour |
S7 | Mallorcan wheat flour |
S8 | Oat flour |
S9 | Corn flour |
S10 | Rye flour |
S11 | Pistachio flour |
Activity Concentration (Bq kg−1) | ||
---|---|---|
Sample ID | 40K | 137Cs |
S1 | 285 ± 46 | <4.1 |
S2 | 144 ± 26 | <3.9 |
S3 | 155 ± 30 | <5.1 |
S4 | 345 ± 51 | <9.8 |
S5 | 248 ± 40 | <2.9 |
S6 | 443 ± 68 | <2.6 |
S7 | 70 ± 15 | <2.2 |
S8 | 152 ± 29 | <6.7 |
S9 | 99 ± 19 | <5.1 |
S10 | 300 ± 41 | <6.4 |
S11 | 370 ± 56 | <7.2 |
Sample ID | Ding (mSv y−1) | Percentage (%) with Respect to Worldwide Average Natural dose to Humans (2.4 mSv y−1) |
---|---|---|
S1 | 0.15 | 6.2 |
S2 | 0.07 | 2.9 |
S3 | 0.08 | 3.3 |
S4 | 0.18 | 7.5 |
S5 | 0.13 | 5.4 |
S6 | 0.23 | 9.6 |
S7 | 0.04 | 1.6 |
S8 | 0.08 | 3.3 |
S9 | 0.05 | 2.1 |
S10 | 0.15 | 6.2 |
S11 | 0.19 | 7.9 |
Heavy Metal Concentration (mg kg−1) | ||
---|---|---|
Sample ID | Cd | Pb |
S1 | 0.010 | 0.17 |
S2 | 0.010 | 0.08 |
S3 | 0.020 | 0.08 |
S4 | 0.020 | 0.11 |
S5 | 0.003 | 0.08 |
S6 | 0.070 | 0.10 |
S7 | 0.010 | 0.15 |
S8 | 0.030 | 0.17 |
S9 | 0.004 | 0.18 |
S10 | 0.010 | 0.07 |
S11 | 0.010 | 0.08 |
Contamination threshold EU Reg. 1881/06 | 0.100–0.200 | 0.20 |
Mineral Concentration (mg kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sample ID | P | Mg | Ca | Na | Fe | Zn | Mn | Cu | Ni |
S1 | 3652 | 1159 | 357 | 41 | 133 | 36 | 36 | 7 | 0.6 |
S2 | 1439 | 478 | 227 | 42 | 17 | 14 | 7 | 4 | 0.4 |
S3 | 1045 | 240 | 54 | 1 | 5 | 12 | 8 | 3 | 0.5 |
S4 | 2173 | 2976 | 8318 | 118 | 17 | 14 | 6 | 6 | 0.7 |
S5 | 2204 | 1105 | 1204 | 64 | 20 | 16 | 6 | 7 | 0.9 |
S6 | 1015 | 505 | 573 | 4607 | 19 | 8 | 28 | 6 | 1.4 |
S7 | 808 | 172 | 272 | 78 | 18 | 8 | 6 | 2 | 0.5 |
S8 | 2610 | 1140 | 864 | 40 | 44 | 24 | 38 | 6 | 2.5 |
S9 | 717 | 1106 | 353 | 97 | 10 | 6 | 1 | 1 | 0.2 |
S10 | 4497 | 1247 | 1161 | 132 | 29 | 26 | 9 | 11 | 0.9 |
S11 | 4413 | 722 | 827 | 51 | 29 | 26 | 9 | 11 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caridi, F.; Acri, G.; Belvedere, A.; Crupi, V.; D’Agostino, M.; Marguccio, S.; Messina, M.; Paladini, G.; Venuti, V.; Majolino, D. Evaluation of the Radiological and Chemical Risk for Public Health from Flour Sample Investigation. Appl. Sci. 2021, 11, 3646. https://doi.org/10.3390/app11083646
Caridi F, Acri G, Belvedere A, Crupi V, D’Agostino M, Marguccio S, Messina M, Paladini G, Venuti V, Majolino D. Evaluation of the Radiological and Chemical Risk for Public Health from Flour Sample Investigation. Applied Sciences. 2021; 11(8):3646. https://doi.org/10.3390/app11083646
Chicago/Turabian StyleCaridi, Francesco, Giuseppe Acri, Alberto Belvedere, Vincenza Crupi, Maurizio D’Agostino, Santina Marguccio, Maurizio Messina, Giuseppe Paladini, Valentina Venuti, and Domenico Majolino. 2021. "Evaluation of the Radiological and Chemical Risk for Public Health from Flour Sample Investigation" Applied Sciences 11, no. 8: 3646. https://doi.org/10.3390/app11083646
APA StyleCaridi, F., Acri, G., Belvedere, A., Crupi, V., D’Agostino, M., Marguccio, S., Messina, M., Paladini, G., Venuti, V., & Majolino, D. (2021). Evaluation of the Radiological and Chemical Risk for Public Health from Flour Sample Investigation. Applied Sciences, 11(8), 3646. https://doi.org/10.3390/app11083646