A Numerical Study of Sub-Millisecond Integrated Mix-and-Inject Microfluidic Devices for Sample Delivery at Synchrotron and XFELs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Work
2.2. Geometric Structure of Microfluidic Devices
2.3. Governing Equations
2.4. Numerical Simulations
3. Results
3.1. Mixing Analysis
3.2. Effect of Flow Rate
3.3. Effect of Microchannel Size
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Cross-sectional area (m2) |
c | Concentration (mol/m3) |
c * | Normalised concentration |
Normalised concentration at point i | |
Mean normalised concentration | |
D | Diffusion coefficient of the solute (m2/s) |
F | Volume force vector (N/m3) |
H | Height of the mixer microchannel (m) |
K | Viscous stress tensor (Pa) |
I | Identity matrix |
l | Characteristic length (m) |
N | Number of sampling points |
p | Pressure inside the mixer microchannel (Pa) |
Pw | The wetted perimeter of the channel (m) |
Pe | Peclet number |
r | Height-to-width ratios (r = H/W) |
u | Velocity vector (m/s) |
W | Width of the mixer microchannel (m) |
ηmiximg | Mixing efficiency (m) |
Solution density (kg/m3) | |
σst | Standard deviation |
References
- Neutze, R.; Moffat, K. Time-resolved structural studies at synchrotrons and x-ray free electron lasers: Opportunities and challenges. Curr. Opin. Struct. Biol. 2012, 22, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Schulz, J.; Bielecki, J.; Doak, R.B.; Dörner, K.; Graceffa, R.; Shoeman, R.L.; Sikorski, M.; Thute, P.; Westphal, D.; Mancuso, A.P. A versatile liquid-jet setup for the European XFEL. J. Synchrotron Radiat. 2019, 26, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Grunbein, M.L.; Kovacs, G.N. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr. Sect. D 2019, 75, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Martiel, I.; Muller-Werkmeister, H.M.; Cohen, A.E. Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr. Section D 2019, 75, 160–177. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.-Z.; Zhang, B.; Yan, E.K.; Sun, B.; Wang, Z.J.; He, J.H.; Yin, D.C. A guide to sample delivery systems for serial crystallography. FEBS J. 2019, 286, 4402–4417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinke, I.; Walther, M.; Lehmkühler, F.; Wochner, P.; Valerio, J.; Mager, R.; Schroer, M.A.; Lee, S.; Roseker, W.; Jain, A.; et al. A liquid jet setup for x-ray scattering experiments on complex liquids at free-electron laser sources. Rev. Sci. Instrum. 2016, 87, 063905. [Google Scholar] [CrossRef] [Green Version]
- Ward, K.; Fan, Z.H. Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng. 2015, 25, 094001. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Chang, C.L.; Wang, Y.N.; Fu, L.M. Microfluidic mixing: A review. Int. J. Mol. Sci. 2011, 12, 3263–3287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-Y.; Wang, W.T.; Liu, C.C.; Fu, L.M. Passive mixers in microfluidic systems: A review. Chem. Eng. J. 2016, 288, 146–160. [Google Scholar] [CrossRef]
- Chen, X.; Shen, J. Simulation and experimental analysis of a SAR micromixer with F-shape mixing units. Anal. Methods 2017, 9, 1885–1890. [Google Scholar] [CrossRef]
- Zare, P.; Talebi, S. Numerical simulation of geometry effect on mixing performance in L-shaped micromixers. Chem. Eng. Commun. 2020, 207, 585–597. [Google Scholar] [CrossRef]
- Chen, X.; Shen, J. Numerical and experimental investigation on splitting-and-recombination micromixer with E-shape mixing units. Microsyst. Technol. 2017, 23, 4671–4677. [Google Scholar] [CrossRef]
- Chung, C.K.; Chang, C.K.; Lai, C.C. Simulation and fabrication of a branch-channel rhombic micromixer for low pressure drop and short mixing length. Microsyst. Technol. 2014, 20, 1981–1986. [Google Scholar] [CrossRef]
- Wu, C.; Tang, K.; Gu, B.; Deng, J.; Liu, Z.; Wu, Z. Concentration-dependent viscous mixing in microfluidics: Modelings and experiments. Microfluid. Nanofluidics 2016, 20, 90. [Google Scholar] [CrossRef]
- Bazaz, S.R.; Amiri, H.A.; Vasilescu, S.; Mehrizi, A.A.; Jin, D.; Miansari, M.; Warkiani, M.E. Obstacle-free planar hybrid micromixer with low pressure drop. Microfluid. Nanofluidics 2020, 24, 61. [Google Scholar] [CrossRef]
- Tsai, R.-T.; Wu, C.-Y. An efficient micromixer based on multidirectional vortices due to baffles and channel curvature. Biomicrofluidics 2011, 5, 014103. [Google Scholar] [CrossRef] [Green Version]
- Melin, J.; Giménez, G.; Roxhed, N.; Van der Wijngaart, W.; Stemme, G. A fast passive and planar liquid sample micromixer. Lab Chip 2004, 4, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, S. 3D micromixers based on Koch fractal principle. Microsyst. Technol. 2018, 24, 2627–2636. [Google Scholar] [CrossRef]
- Shi, X.; Huang, S.; Wang, L.; Li, F. Numerical analysis of passive micromixer with novel obstacle design. J. Dispers. Sci. Technol. 2019, 42, 440–456. [Google Scholar] [CrossRef]
- Wu, S.-J.; Hsu, H.-C.; Feng, W.-J. Novel design and fabrication of a geometrical obstacle-embedded micromixer with notched wall. Jpn. J. Appl. Phys. 2014, 53, 097201. [Google Scholar] [CrossRef]
- Bernacka-Wojcik, I.; Ribeiro, S.; Wojcik, P.J.; Alves, P.U.; Busani, T.; Fortunato, E.; Baptista, P.V.; Covas, J.A.; Águas, H.; Hilliou, L.; et al. Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length. RSC Adv. 2014, 4, 56013–56025. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Wang, L.; Huang, S.; Li, F. A novel passive micromixer with array of Koch fractal obstacles in microchannel. J. Dispers. Sci. Technol. 2019, 42, 236–247. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Z. Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal. Chim. Acta 2017, 964, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Solehati, N.; Bae, J.; Sasmito, A.P. Numerical investigation of mixing performance in microchannel T-junction with wavy structure. Comput. Fluids 2014, 96, 10–19. [Google Scholar] [CrossRef]
- Chen, X.; Li, T. A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem. Eng. J. 2017, 313, 1406–1414. [Google Scholar] [CrossRef]
- COMSOL Multiphysics® v. 5.6. COMSOL AB, Stockholm, Sweden. Available online: www.comsol.com (accessed on 9 April 2021).
- Liu, C.; Li, Y.; Liu, B.-F. Micromixers and their applications in kinetic analysis of biochemical reactions. Talanta 2019, 205, 120136. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zeng, Y.; Zhou, H.; Qu, J.Y.; Yao, S. Visualizing millisecond chaotic mixing dynamics in microdroplets: A direct comparison of experiment and simulation. Biomicrofluidics 2012, 6, 012810. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Ismagilov, R.F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc. 2003, 125, 14613–14619. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhao, S.; Zhu, P.; Shi, J.; Yan, F.; Xia, H.; Shen, R. Improvement of silver azide crystal morphology and detonation behavior by fast mixing using a microreaction system with an integrated static micromixer. React. Chem. Eng. 2020, 5, 154–162. [Google Scholar] [CrossRef]
- Pal, S. Chapter 7—Protein Folding. In Fundamentals of Molecular Structural Biology; Pal, S., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 149–169. [Google Scholar]
- Lindorff-Larsen, K.; Maragakis, P.; Piana, S.; Shaw, D.E. Picosecond to millisecond structural dynamics in human ubiquitin. J. Phys. Chem. B 2016, 120, 8313–8320. [Google Scholar] [CrossRef]
- Sekhar, A.; Vallurupalli, P.; Kay, L.E. Defining a length scale for millisecond-timescale protein conformational exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 11391–11396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strack, R. XFELs probe protein dynamics. Nat. Methods 2015, 12, 109. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Zhou, X.E.; Gao, X.; He, Y.; Liu, W.; Ishchenko, A.; Barty, A.; White, T.A.; Yefanov, O.; Han, G.W.; et al. Crystal structure of rhodopsin bound to arrestin by femtosecond x-ray laser. Nature 2015, 523, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Knoška, J.; Adriano, L.; Awel, S.; Beyerlein, K.R.; Yefanov, O.; Oberthuer, D.; Murillo, G.E.P.; Roth, N.; Sarrou, I.; Villanueva-Perez, P.; et al. Ultracompact 3D microfluidics for time-resolved structural biology. Nat. Commun. 2020, 11, 657. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Min, K.I.; Inoue, K.; Kim, D.P.; Yoshida, J.I. Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing. Science 2016, 352, 691. [Google Scholar] [CrossRef] [PubMed]
- Mäeots, M.-E.; Lee, B.; Nans, A.; Jeong, S.G.; Esfahani, M.M.; Ding, S.; Smith, D.J.; Lee, C.S.; Lee, S.S.; Peter, M.; et al. Modular microfluidics enables kinetic insight from time-resolved cryo-EM. Nat. Commun. 2020, 11, 3465. [Google Scholar] [CrossRef]
- Jones, S.W.; Thomas, O.M.; Aref, H. Chaotic advection by laminar flow in a twisted pipe. J. Fluid Mech. 1989, 209, 335–357. [Google Scholar] [CrossRef]
- Hejazian, M.; Darmanin, C.; Balaur, E.; Abbey, B. Mixing and jetting analysis using continuous flow microfluidic sample delivery devices. RSC Adv. 2020, 10, 15694–15701. [Google Scholar] [CrossRef] [Green Version]
- Hejazian, M.; Balaur, E.; Flueckiger, L.; Hor, L.; Darmanin, C.; Abbey, B. Microfluidic mixing and jetting devices based on SU8 and glass for time-resolved molecular imaging experiments. Proc. SPIE 2019, 10875, 108750D. [Google Scholar]
- Rani, S.A.; Pitts, B.; Stewart, P.S. Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy. Antimicrob. Agents Chemother. 2005, 49, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, X.; Chuai, R.; Zhang, Y. Chaotic Micromixer Based on 3D Horseshoe Transformation. Micromachines 2019, 10, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosensweig, R.E. The Kinematics of Mixing: Stretching, Chaos, and Transport; Ottino, J.M., Ed.; Cambridge Texts in Applied Mathematics; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Simonnet, C.; Groisman, A. Chaotic mixing in a steady flow in a microchannel. Phys. Rev. Lett. 2005, 94, 134501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.T. Micro and Nano Technologies, Micromixers, 2nd ed.; Elsevier/William Andrew: Amsterdam, The Netherlands, 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hejazian, M.; Balaur, E.; Abbey, B. A Numerical Study of Sub-Millisecond Integrated Mix-and-Inject Microfluidic Devices for Sample Delivery at Synchrotron and XFELs. Appl. Sci. 2021, 11, 3404. https://doi.org/10.3390/app11083404
Hejazian M, Balaur E, Abbey B. A Numerical Study of Sub-Millisecond Integrated Mix-and-Inject Microfluidic Devices for Sample Delivery at Synchrotron and XFELs. Applied Sciences. 2021; 11(8):3404. https://doi.org/10.3390/app11083404
Chicago/Turabian StyleHejazian, Majid, Eugeniu Balaur, and Brian Abbey. 2021. "A Numerical Study of Sub-Millisecond Integrated Mix-and-Inject Microfluidic Devices for Sample Delivery at Synchrotron and XFELs" Applied Sciences 11, no. 8: 3404. https://doi.org/10.3390/app11083404
APA StyleHejazian, M., Balaur, E., & Abbey, B. (2021). A Numerical Study of Sub-Millisecond Integrated Mix-and-Inject Microfluidic Devices for Sample Delivery at Synchrotron and XFELs. Applied Sciences, 11(8), 3404. https://doi.org/10.3390/app11083404