Development and Evaluation of a Fluctuating Plume Model for Odor Impact Assessment
Abstract
:Featured Application
Abstract
1. Introduction
2. Model Development
2.1. Conceptual Bases of the Fluctuating Plume Model
2.2. General Lagrangian Theory of the Fluctuating Plume Model
2.3. Gaussian Fluctuating Plume Model for Statistical Moments (Marro’s Model)
2.4. New Operational Gaussian Fluctuating Plume Model
2.5. Peak Concentration
2.6. Dispersion Parameters and Relative Concentration Intensity
- given the flight time t (t = x/Um), the parameters and , the Eulerian standard deviations of the transverse and vertical component of motion, can be obtained from the Taylor theory of dispersion [85] as
- the longitudinal and vertical dispersion parameters for the relative dispersion can be expressed from the following relationships:
3. Materials and Methods
3.1. Software Implementation
- Meteorological and micrometeorological input data
- Emission source data
- Calculation of average concentration
- Calculation of concentration standard deviation and concentration intensity
- Peak percentile calculation (with a PDF-dependent choice, Gamma, or Modified-Weibull).
3.2. Uttenweiler Field Experiment
3.3. Meteorological Data Setting
3.4. Performance Evaluation
4. Results and Discussions
4.1. Raw Data Processing
4.2. Mean Concentration
4.3. Standard Deviation of Concentration,
4.4. Intensity of Concentration,
4.5. Peak-to-Mean Factor, R90
4.6. Experimental Underestimation of Peak-to-Mean
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Secundo, L.; Snitz, K.; Sobel, N. The perceptual logic of smell. Curr. Opin. Neurobiol. 2014, 25, 107–115. [Google Scholar] [CrossRef]
- Zhou, Y.; Hallis, S.A.; Vitko, T.; Suffet, I.H. (Mel) Identification, quantification and treatment of fecal odors released into the air at two wastewater treatment plants. J. Environ. Manag. 2016, 180, 257–263. [Google Scholar] [CrossRef]
- Roveda, L.; Polvara, E.; Invernizzi, M.; Capelli, L.; Sironi, S. Definition of an Emission Factor for VOC Emitted from Italian and European Refineries. Atmosphere 2020, 11, 564. [Google Scholar] [CrossRef]
- Invernizzi, M.; Ilare, J.; Capelli, L.; Sironi, S. Proposal of a method for evaluating odour emissions from refinery storage tanks. Chem. Eng. Trans. 2018, 68, 49–54. [Google Scholar] [CrossRef]
- Dunlop, M.W.; Blackall, P.J.; Stuetz, R.M. Odour emissions from poultry litter–A review litter properties, odour formation and odorant emissions from porous materials. J. Environ. Manag. 2016, 177, 306–319. [Google Scholar] [CrossRef] [Green Version]
- Marchand, M.; Aissani, L.; Mallard, P.; Beĺine, F.; Revéret, J.P. Odour and Life Cycle Assessment (LCA) in waste management: A local assessment proposal. Waste Biomass Valorization 2013, 4, 607–617. [Google Scholar] [CrossRef]
- Mackie, K.R.; Cooper, C.D. Landfill gas emission prediction using Voronoi diagrams and importance sampling. Environ. Model. Softw. 2009, 24, 1223–1232. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwe Academic Press: Dordrecht, The Netherlands, 1988; ISBN 978-90-277-2769-5. [Google Scholar]
- Sorbjan, Z. Structure of the Atmospheric Boundary Layer; Printice Hall: Hoboken, NJ, USA, 1989; ISBN 978-0138535575. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Mechanics of Turbulence; Dover Publications: Mineola, NY, USA, 2007; Volume 1. [Google Scholar]
- Pope, S.B. Turbolent Flows; Cambridge University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Wyngaard, J.C. Turbolence in the Atmosphere; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NY, USA, 2016. [Google Scholar]
- Jacobson, M.Z. Fundamentals of Atmospheric Modeling, 2nd ed.; Cambridge University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Rodean, H.C. Stochastic Lagrangian Models of Turbulent Diffusion; Society, A.M., Ed.; Springer: Boston, MA, USA, 1996; ISBN 978-1-935704-11-9. [Google Scholar]
- Nicell, J.A. Assessment and regulation of odour impacts. Atmos. Environ. 2009, 43, 196–206. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Petz, E. Diurnal and annual variation of the sensation distance of odour emitted by livestock buildings calculated by the Austrian odour dispersion model (AODM). Atmos. Environ. 2000, 34, 4839–4851. [Google Scholar] [CrossRef]
- Invernizzi, M.; Capelli, L.; Sironi, S. Proposal of odor nuisance index as urban planning tool. Chem. Senses 2017, 42, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Palmiotto, M.; Fattore, E.; Paiano, V.; Celeste, G.; Colombo, A.; Davoli, E. Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int. 2014, 68, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Li, H.; Fu, X.; Guo, H.; Meng, R.; Lu, W.; Zhao, M.; Wang, H. Health risk impacts analysis of fugitive aromatic compounds emissions from the working face of a municipal solid waste landfill in China. Environ. Int. 2016, 97, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Sucker, K.; Both, R.; Winneke, G. Review of adverse health effects of odours in field studies. Water Sci. Technol. 2009, 59, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Schauberger, G.; Piringer, M.; Schmitzer, R.; Kamp, M.; Sowa, A.; Koch, R.; Eckhof, W.; Grimm, E.; Kypke, J.; Hartung, E. Concept to assess the human perception of odour by estimating short-time peak concentrations from one-hour mean values. Reply to a comment by Janicke et al. Atmos. Environ. 2012, 54, 624–628. [Google Scholar] [CrossRef]
- Klein, P.M.; Young, D.T. Concentration fluctuations in a downtown urban area. Part I: Analysis of Joint Urban 2003 full-scale fast-response measurements. Environ. Fluid Mech. 2011, 11, 23–42. [Google Scholar] [CrossRef]
- Pope, S.B. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 1985, 11, 119–192. [Google Scholar] [CrossRef]
- Bell, A.G. Discovery and Invention; Judd & Detweiler Inc.: Washington, DC, USA, 1914. [Google Scholar]
- Bax, C.; Sironi, S.; Capelli, L. How Can Odors Be Measured? An Overview of Methods and Their Applications. Atmosphere 2020, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Conti, C.; Guarino, M.; Bacenetti, J. Measurements techniques and models to assess odor annoyance: A review. Environ. Int. 2020, 134, 105261. [Google Scholar] [CrossRef]
- Sozzi, R. La Micrometeorologia e La Dispersione Degli Inquinanti in Aria; Consorzio AGE: Rome, Italy, 2003. [Google Scholar]
- Badach, J.; Kolasińska, P.; Paciorek, M.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Dymnicka, M.; Namieśnik, J. A case study of odour nuisance evaluation in the context of integrated urban planning. J. Environ. Manag. 2018, 213, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Danuso, F.; Rocca, A.; Ceccon, P.; Ginaldi, F. A software application for mapping livestock waste odour dispersion. Environ. Model. Softw. 2015, 69, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, Y.; Lu, W.; Wang, H.; Huang, Q. ModOdor: 3D numerical model for dispersion simulation of gaseous contaminants from waste treatment facilities. Environ. Model. Softw. 2019, 113, 1–19. [Google Scholar] [CrossRef]
- Brancher, M.; Schauberger, G.; Franco, D.; De Melo Lisboa, H. Odour impact criteria in south American regulations. Chem. Eng. Trans. 2016, 54, 169–174. [Google Scholar] [CrossRef]
- Brancher, M.; Griffiths, K.D.; Franco, D.; de Melo Lisboa, H. A review of odour impact criteria in selected countries around the world. Chemosphere 2017, 168, 1531–1570. [Google Scholar] [CrossRef]
- Cassiani, M.; Bertagni, M.B.; Marro, M.; Salizzoni, P. Concentration Fluctuations from Localized Atmospheric Releases. Boundary-Layer Meteorol. 2020, 177, 461–510. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, E.; Oettl, D. An evaluation of a Lagrangian stochastic model for the assessment of odours. Atmos. Environ. 2019, 206, 237–246. [Google Scholar] [CrossRef]
- TA-Luft. Technische Anleitung Zur Reinhaltung der LuftFirst General Administrative Regulation Pertaining the Federal Immission Control Act; Federal Ministry for Environment, Nature Conservation and Nuclear Safety: Bone, Germany, 2002; p. 252. [Google Scholar]
- Schauberger, G.; Piringer, M. Assessment of separation distances to avoid odour annoyance: Interaction between odour impact criteria and peak-to-mean factors. Chem. Eng. Trans. 2012, 30, 13–18. [Google Scholar] [CrossRef]
- Regione Piemonte D.g.r. 9 Gennaio 2017, n. 13-4554. L.R. 43/2000-Linee Guida Per la Caratterizzazione e il Contenimento Delle Emissioni in Atmosfera Provenienti Dalle Attività ad Impatto Odorigeno. Available online: http://www.regione.piemonte.it/governo/bollettino/abbonati/2017/05/attach/dgr_04554_930_09012017.pdf (accessed on 26 February 2021).
- Trentino Alto Adige, G. Provinciale Linee Guida Per la Caratterizzazione, L’analisi e la Definizione dei Criteri Tecnici E Gestionali per la Mitigazione Delle Emissioni Delle Attività ad Impatto Odorigeno. Available online: https://www.ufficiostampa.provincia.tn.it/content/download/38536/643559/file/Linee_guida_odori.pdf (accessed on 26 February 2021).
- Regione Lombardia D.g.r. 15 Febbraio 2012-n. IX/3018-Determinazioni Generali in Merito Alla Caratterizzazione Delle Emissioni Gassose in Atmosfera Derivanti da Attività a Forte Impatto Odorigeno. Available online: https://www.regione.lombardia.it/wps/wcm/connect/8c3b2bab-5c37-4a55-8397-b0a9d684f094/DGR+3018_2012.pdf?MOD=AJPERES&CACHEID=8c3b2bab-5c37-4a55-8397-b0a9d684f094 (accessed on 26 February 2021).
- Oettl, D.; Ferrero, E. A simple model to assess odour hours for regulatory purposes. Atmos. Environ. 2017, 155, 162–173. [Google Scholar] [CrossRef]
- Smith, M. Recommended Guide for the Prediction of the Dispersion of Airborne Effluents; No, 68-31123; American Society of Mechanical Engineers: New York, NY, USA, 1973. [Google Scholar]
- Schauberger, G.; Schmitzer, R.; Kamp, M.; Sowa, A.; Koch, R.; Eckhof, W.; Eichler, F.; Grimm, E.; Kypke, J.; Hartung, E. Empirical model derived from dispersion calculations to determine separation distances between livestock buildings and residential areas to avoid odour nuisance. Atmos. Environ. 2012, 46, 508–515. [Google Scholar] [CrossRef]
- Mylne, K.R.; Mason, P.J. Concentration fluctuation measurements in a dispersing plume at a range of up to 1000 m. Q. J. R. Meteorol. Soc. 1991, 117, 177–206. [Google Scholar] [CrossRef]
- Hoinaski, L.; Franco, D.; de Melo Lisboa, H. Comparison of plume lateral dispersion coefficients schemes: Effect of averaging time. Atmos. Pollut. Res. 2016, 7, 134–141. [Google Scholar] [CrossRef]
- Hoinaski, L.; Franco, D.; de Melo Lisboa, H. An analysis of error propagation in AERMOD lateral dispersion using Round Hill II and Uttenweiller experiments in reduced averaging times. Environ. Technol. 2017, 38, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, E.; Manor, A.; Mortarini, L.; Oettl, D. Concentration Fluctuations and Odor Dispersion in Lagrangian Models. Atmosphere 2019, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Gifford, F. Statistical Properties of A Fluctuating Plume Dispersion Model. Adv. Geophys. 1959, 6, 117–137. [Google Scholar] [CrossRef]
- Luhar, A.K.; Hibberd, M.F.; Borgas, M.S. A skewed meandering plume model for concentration statistics in the convective boundary layer. Atmos. Environ. 2000, 34, 3599–3616. [Google Scholar] [CrossRef]
- Cassiani, M.; Giostra, U. A simple and fast model to compute concentration moments in a convective boundary layer. Atmos. Environ. 2002, 36, 4717–4724. [Google Scholar] [CrossRef]
- Franzese, P. Lagrangian stochastic modeling of a fluctuating plume in the convective boundary layer. Atmos. Environ. 2003, 37, 1691–1701. [Google Scholar] [CrossRef]
- Mortarini, L.; Franzese, P.; Ferrero, E. A fluctuating plume model for concentration fluctuations in a plant canopy. Atmos. Environ. 2009, 43, 921–927. [Google Scholar] [CrossRef]
- Luhar, A.K.; Sawford, B.L. Micromixing modelling of mean and fluctuating scalar fields in the convective boundary layer. Atmos. Environ. 2005, 39, 6673–6685. [Google Scholar] [CrossRef]
- Marro, M.; Nironi, C.; Salizzoni, P.; Soulhac, L. Dispersion of a Passive Scalar Fluctuating Plume in a Turbulent Boundary Layer. Part II: Analytical Modelling. Boundary-Layer Meteorol. 2015, 156, 447–469. [Google Scholar] [CrossRef]
- Nironi, C.; Salizzoni, P.; Marro, M.; Mejean, P.; Grosjean, N.; Soulhac, L. Dispersion of a Passive Scalar Fluctuating Plume in a Turbulent Boundary Layer. Part I: Velocity and Concentration Measurements. Boundary-Layer Meteorol. 2015, 156, 415–446. [Google Scholar] [CrossRef]
- Bachlin, W.; Rühling, A.; Lohmeyer, A. Bereitstellung von validierungs-daten Für Geruchsausbreitungs-modelle–Naturmessungen, ingenieurbüro lohmeyer. Available online: https://pudi.lubw.de/detailseite/-/publication/28459-Bereitstellung_von_Validierungsdaten_für_Geruchsausbreitungsmodelle_-_Naturmessungen.pdf (accessed on 26 February 2021).
- Mahrt, L.; Mills, R. Horizontal diffusion by submeso motions in the stable boundary layer. Environ. Fluid Mech. 2009, 9, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Anfossi, D.; Oettl, D.; Degrazia, G.; Goulart, A. An analysis of sonic anemometer observations in low wind speed conditions. Boundary-Layer Meteorol. 2005, 114, 179–203. [Google Scholar] [CrossRef]
- Mortarini, L.; Ferrero, E.; Falabino, S.; Trini Castelli, S.; Richiardone, R.; Anfossi, D. Low-frequency processes and turbulence structure in a perturbed boundary layer. Q. J. R. Meteorol. Soc. 2013, 139, 1059–1072. [Google Scholar] [CrossRef] [Green Version]
- Mortarini, L.; Maldaner, S.; Moor, L.P.; Stefanello, M.B.; Acevedo, O.; Degrazia, G.; Anfossi, D. Temperature auto-correlation and spectra functions in low-wind meandering conditions. Q. J. R. Meteorol. Soc. 2016, 142, 1881–1889. [Google Scholar] [CrossRef]
- Mortarini, L.; Stefanello, M.; Degrazia, G.; Roberti, D.; Trini Castelli, S.; Anfossi, D. Characterization of Wind Meandering in Low-Wind-Speed Conditions. Boundary-Layer Meteorol. 2016, 161, 165–182. [Google Scholar] [CrossRef]
- Sykes, R.I. Concentration fluctuations in dispersing plumes. In Lectures on Air Pollution Modeling; American Meteorological Society: Boston, MA, USA, 1988. [Google Scholar]
- Yee, E.; Kosteniuk, P.R.; Chandler, G.M.; Biltoft, C.A.; Bowers, J.F. Statistical characteristics of concentration fluctuations in dispersing plumes in the atmospheric surface layer. Boundary-Layer Meteorol. 1993, 65, 69–109. [Google Scholar] [CrossRef]
- Yee, E.; Chan, R.; Kosteniuk, P.R.; Chandler, G.M.; Biltoft, C.A.; Bowers, J.F. Incorporation of internal fluctuations in a meandering plume model of concentration fluctuations. Boundary-Layer Meteorol. 1994, 67, 11–39. [Google Scholar] [CrossRef]
- Yee, E.; Wilson, D.J. A comparison of the detailed structure in dispersing tracer plumes measured in grid-generated turbulence with a meandering plume model incorporating internal fluctuations. Boundary-Layer Meteorol. 2000, 94, 253–296. [Google Scholar] [CrossRef]
- Peterson, H.; Lamb, B. Comparison of Results from a Meandering-Plume Model with Measured Atmospheric Tracer Concentration Fluctuations. J. Appl. Meteor. 1992, 31, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Peterson, H.; Lamb, B. An Investigation of Instantaneous Diffusion and Concentration Fluctuations. J. Appl. Meteor. 1995, 34, 2724–2746. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Boybeyi, Z.; Hanna, S.; Chayantrakom, K. Plume dispersion from the MVP field experiment. Analysis of surface concentration and its fluctuations. Atmos. Environ. 2005, 39, 3039–3054. [Google Scholar] [CrossRef]
- Peterson, H.; Mazzolini, D.; O’Neill, S.; Lamb, B. Instantaneous spread of plumes in the surface layer. J. Appl. Meteorol. 1999, 38, 343–352. [Google Scholar] [CrossRef]
- Yee, E.; Chan, R.; Kosteniuk, P.R.; Chandler, G.M.; Biltoft, C.A.; Bowers, J.F. Experimental measurements of concentration fluctuations and scales in a dispersing plume in the atmospheric surface layer obtained using a very fast response concentration detector. J. Appl. Meteor. 1994, 33, 996–1016. [Google Scholar] [CrossRef]
- Yeung, P.K.; Borgas, M.S. Relative dispersion in isotropic turbulence. Part 1. Direct numerical simulations and Reynolds-number dependence. J. Fluid Mech. 2004, 503, 93–124. [Google Scholar] [CrossRef]
- Yeung, P.K.; Pope, S.B. Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 1989, 207, 531–586. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A.; Vilà-Guerau de Arellano, J. Statistics of absolute and relative dispersion in the atmospheric convective boundary layer: A large-eddy simulation study. J. Atmos. Sci. 2006, 63, 1253–1272. [Google Scholar] [CrossRef]
- Sykes, R.I.; Henn, D.S. Large-eddy simulation of concentration fluctuations in a dispersing plume. Atmos. Environ. Part A. Gen. Top. 1992, 26, 3127–3144. [Google Scholar] [CrossRef]
- Finn, D.; Clawson, K.L.; Carter, R.G.; Rich, J.D.; Biltoft, C.; Leach, M. Analysis of Urban Atmosphere Plume Concentration Fluctuations. Boundary-Layer Meteorol. 2010, 136, 431–456. [Google Scholar] [CrossRef] [Green Version]
- Lung, T.; Müller, H.-J.; Gläser, M.; Möller, B. Measurements and Modelling of Full-Scale Concentration Fluctuations. Agrartech. Forsch. 2002, 8, E5–E15. [Google Scholar]
- Mylne, K.R. Concentration fluctuation measurements in a plume dispersing in a stable surface layer. Boundary-Layer Meteorol. 1992, 60, 15–48. [Google Scholar] [CrossRef]
- Yee, E.; Wang, B.C.; Lien, F.S. Probabilistic model for concentration fluctuations in compact-source plumes in an urban environment. Boundary-Layer Meteorol. 2009, 130, 169–208. [Google Scholar] [CrossRef]
- Sawford, B.L. Conditional concentration statistics for surface plumes in the atmospheric boundary layer. Boundary-Layer Meteorol. 1987, 38, 209–223. [Google Scholar] [CrossRef]
- Hanna, S.R. The exponential probability density function and concentration fluctuations in smoke plumes. Boundary-Layer Meteorol. 1984, 29, 361–375. [Google Scholar] [CrossRef]
- Lewellen, W.S.; Sykes, R.I. Analysis of concentration fluctuations from lidar observations of atmospheric plumes. J. Appl. Meteorol. Climatol. 1986, 25, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Invernizzi, M.; Brancher, M.; Sironi, S.; Capelli, L.; Piringer, M.; Schauberger, G. Odour impact assessment by considering short-term ambient concentrations: A multi-model and two-site comparison. Environ. Int. 2020, 144, 17. [Google Scholar] [CrossRef] [PubMed]
- Oettl, D.; Kropsch, M.; Mandl, M. Odour assessment in the vicinity of a pig-fatting farm using field inspections (EN 16841-1) and dispersion modelling. Atmos. Environ. 2018, 181, 54–60. [Google Scholar] [CrossRef]
- Yee, E.; Skvortsov, A. Scalar fluctuations from a point source in a turbulent boundary layer. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011, 84, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G. Diffusion by continuous movements. Proc. London Math. Soc. 1922, 196–211. [Google Scholar] [CrossRef]
- Olesen, H.R.; Berkowicz, R.; Løfstrøm, P. OML: Review of Model Formulation; National Environmental Research Institute: Aarhus, Denmark, 2007; ISBN 1600-0048/978-87-7772-971-3. [Google Scholar]
- Franzese, P.; Cassiani, M. A statistical theory of turbulent relative dispersion. J. Fluid Mech. 2007, 571, 391–417. [Google Scholar] [CrossRef]
- Gailis, R.M.; Hill, A.; Yee, E.; Hilderman, T. Extension of a fluctuating plume model of tracer dispersion to a sheared boundary layer and to a large array of obstacles. Boundary-Layer Meteorol. 2007, 122, 577–607. [Google Scholar] [CrossRef]
- Deardorff, J.W.; Willis, G.E. Groundlevel concentration fluctuations from a buoyant and a non-buoyant source within a laboratory convectively mixed layer. Atmos. Environ. 1984, 18, 1297–1309. [Google Scholar] [CrossRef]
- Hibberd, M.F.; Sawford, B.L. A saline laboratory model of the planetary convective boundary layer. Boundary-Layer Meteorol. 1994, 67, 229–250. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Hanna, S.; Chang, J. Skyscraper rooftop tracer concentration observations in Manhattan and comparisons with urban dispersion models. Atmos. Environ. 2015, 106, 215–222. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Gustafson, W.I.; Yu, S. Generalized approach for using unbiased symmetric metrics with negative values: Normalized mean bias factor and normalized mean absolute error factor. Atmos. Sci. Lett. 2012, 13, 262–267. [Google Scholar] [CrossRef]
- Rani Das, K. A Brief Review of Tests for Normality. Am. J. Theor. Appl. Stat. 2016, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Pongratz, T.; Öttl, D.; Uhrner, U. Documentation of the Lagrangian Particle Model GRAL (Graz Lagrangian Model). Available online: http://lampz.tugraz.at/~gral/index.php/download (accessed on 26 February 2021).
- Best, P.R.; Lunney, K.E.; Killip, C.A. Statistical elements of predicting the impact of a variety of odour sources. Water Sci. Technol. 2001, 44, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Brancher, M.; Hieden, A.; Baumann-Stanzer, K.; Schauberger, G.; Piringer, M. Performance evaluation of approaches to predict sub-hourly peak odour concentrations. Atmos. Environ. X 2020, 7, 100076. [Google Scholar] [CrossRef]
- Piringer, M.; Knauder, W.; Petz, E.; Schauberger, G. A comparison of separation distances against odour annoyance calculated with two models. Atmos. Environ. 2015, 116, 22–35. [Google Scholar] [CrossRef]
- Piringer, M.; Knauder, W.; Petz, E.; Schauberger, G. Determining separation distances to avoid odour annoyance with two models for a site in complex terrain. Chem. Eng. Trans. 2016, 54, 7–12. [Google Scholar] [CrossRef]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures, 4th ed.; John Wiley & Sons: New York, NY, USA, 2010; ISBN 978-0-470-24877-5. [Google Scholar]
- Moore, C.J. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol. 1986, 37, 17–35. [Google Scholar] [CrossRef]
- Horst, T.W. A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorol. 1997, 82, 219–233. [Google Scholar] [CrossRef]
- Moncrieff, J.B.; Massheder, J.M.; De Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol. 1997, 188–189, 589–611. [Google Scholar] [CrossRef]
- Lee, X.; Massman, W.; Law, B. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Springer: Dordrecht, The Netherlands, 2004; ISBN 978-1-4020-2265-4. [Google Scholar]
p1 | p2 | p3 | q1 | q2 | q3 | |
---|---|---|---|---|---|---|
LLS [55] | 0.35 | −0.65 | 5.97 | 2.50 | −0.55 | 1.20 |
Experiment | Date | Release Time | SF6 Emission Rate | σu | σv | σw | u* | Wind Speed | Wind Direction | Wind Direction Range | |
---|---|---|---|---|---|---|---|---|---|---|---|
Start | End | (g/h) | (m/s) | (m/s) | (m/s) | (m/s) | (m/s) | (°) | (°) | ||
B | 12 December 2000 | 13:00 | 13:10 | 121.7 | 0.393 | 0.368 | 0.257 | 0.192 | 3.9 | 210 | 205–222 |
C | 12 December 2000 | 14:10 | 14:20 | 121.7 | 0.427 | 0.436 | 0.306 | 0.198 | 4.6 | 220 | 214–238 |
D | 12 December 2000 | 14:45 | 14:55 | 121.7 | 0.294 | 0.305 | 0.221 | 0.14 | 2.5 | 237 | 222–246 |
E | 13 December 2000 | 12:00 | 12:10 | 121.7 | 0.968 | 0.946 | 0.624 | 0.365 | 7.9 | 246 | 238–267 |
F | 13 December 2000 | 13:05 | 13:15 | 121.7 | 0.77 | 0.762 | 0.489 | 0.321 | 6.8 | 244.5 | 217–255 |
G | 13 December 2000 | 13:50 | 14:00 | 121.7 | 0.738 | 0.725 | 0.496 | 0.306 | 6.5 | 242 | 233–258 |
H | 13 December 2000 | 15:10 | 15:20 | 121.7 | 0.533 | 0.531 | 0.369 | 0.238 | 2.7 | 236 | 225–257 |
I | 31 October 2001 | 11:40 | 11:50 | 225.5 | 0.792 | 0.762 | 0.504 | 0.346 | 5.4 | 222 | 208–237 |
J | 31 October 2001 | 12:00 | 12:10 | 225.5 | 0.743 | 0.702 | 0.492 | 0.337 | 5.8 | 225.5 | 211–235 |
K | 31 October 2001 | 13:40 | 13:50 | 225.5 | 0.688 | 0.674 | 0.454 | 0.295 | 4.5 | 226 | 206–234 |
L | 31 October 2001 | 14:05 | 14:15 | 225.5 | 0.656 | 0.617 | 0.423 | 0.274 | 5.2 | 232 | 216–236 |
Trial | Receptor | Cm | Cmax | σc | Ic | C90 | R90 |
---|---|---|---|---|---|---|---|
(μg/m3) | (μg/m3) | (μg/m3) | (μg/m3) | ||||
B | T1P5 | 0.01 | 0.09 | 0.02 | 1.98 | 0.0 | 3.1 |
T2P4 | 1.13 | 7.36 | 1.76 | 1.56 | 3.7 | 3.2 | |
C | T1P5 | 8.64 | 27.02 | 6.63 | 0.77 | 18.4 | 2.1 |
T2P4 | 9.13 | 16.67 | 3.54 | 0.39 | 13.2 | 1.4 | |
D | T1P3 | 0.01 | 0.04 | 0.01 | 1.60 | 0.0 | 3.3 |
T2P3 | 0.02 | 0.04 | 0.02 | 0.85 | 0.0 | 1.9 | |
E | T1P3 | 9.30 | 30.91 | 7.03 | 0.76 | 18.0 | 1.9 |
T2P2 | 2.53 | 12.17 | 3.54 | 1.40 | 8.0 | 3.2 | |
F | T1P2 | 13.70 | 36.39 | 8.75 | 0.64 | 25.1 | 1.8 |
T2P2 | 6.79 | 16.92 | 4.37 | 0.64 | 12.8 | 1.9 | |
G | T1P2 | 15.69 | 41.32 | 11.66 | 0.74 | 29.9 | 1.9 |
T2P2 | 7.02 | 17.40 | 4.25 | 0.61 | 13.3 | 1.9 | |
H | T1P4 | 3.41 | 36.15 | 7.40 | 2.17 | 11.0 | 3.2 |
T2P3 | 5.44 | 21.72 | 6.33 | 1.16 | 15.0 | 2.7 | |
I | T1P4 | 6.18 | 28.66 | 6.86 | 1.11 | 16.0 | 2.6 |
T1P9 | 4.58 | 31.52 | 7.46 | 1.63 | 16.4 | 3.6 | |
J | T1P4 | 3.24 | 26.29 | 5.92 | 1.83 | 6.9 | 2.1 |
T1P8 | 8.47 | 36.09 | 8.63 | 1.02 | 20.1 | 2.4 | |
K | T1P4 | 6.27 | 36.57 | 7.77 | 1.24 | 14.9 | 2.4 |
T1P9 | 5.56 | 34.08 | 7.55 | 1.36 | 14.5 | 2.6 | |
L | T1P4 | 0.76 | 8.15 | 1.15 | 1.52 | 1.5 | 2.0 |
T1P9 | 19.81 | 37.18 | 8.82 | 0.45 | 31.1 | 1.6 |
Trials | MB | NMB | RMSE | NMSE | IOA | FAC2 | |
---|---|---|---|---|---|---|---|
All cases (B-L) | 5.6 | −0.2 | −0.03 | 4.5 | 0.7 | 0.88 | 72% |
MB | NMB | RMSE | NMSE | IOA | FAC2 | |
---|---|---|---|---|---|---|
Gamma | 0.35 | 0.15 | 0.84 | 0.28 | 0.47 | 94% |
Modified Weibull | 0.87 | 0.37 | 1.41 | 0.79 | 0.32 | 82% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Invernizzi, M.; Capra, F.; Sozzi, R.; Capelli, L.; Sironi, S. Development and Evaluation of a Fluctuating Plume Model for Odor Impact Assessment. Appl. Sci. 2021, 11, 3310. https://doi.org/10.3390/app11083310
Invernizzi M, Capra F, Sozzi R, Capelli L, Sironi S. Development and Evaluation of a Fluctuating Plume Model for Odor Impact Assessment. Applied Sciences. 2021; 11(8):3310. https://doi.org/10.3390/app11083310
Chicago/Turabian StyleInvernizzi, Marzio, Federica Capra, Roberto Sozzi, Laura Capelli, and Selena Sironi. 2021. "Development and Evaluation of a Fluctuating Plume Model for Odor Impact Assessment" Applied Sciences 11, no. 8: 3310. https://doi.org/10.3390/app11083310
APA StyleInvernizzi, M., Capra, F., Sozzi, R., Capelli, L., & Sironi, S. (2021). Development and Evaluation of a Fluctuating Plume Model for Odor Impact Assessment. Applied Sciences, 11(8), 3310. https://doi.org/10.3390/app11083310