Biology of Drug-Induced Gingival Hyperplasia: In Vitro Study of the Effect of Nifedipine on Human Fibroblasts
Abstract
1. Introduction
Objectives
2. Materials and Methods
2.1. Primary Human Fibroblast Cells’ Culture
2.2. Cell Viability Test
2.3. Cell Treatment
2.4. RNA Isolation, Reverse Transcription, and Quantitative Real-Time Polymerase Chain Reaction
2.5. Statistical Analysis
2.6. Detection of E-Cadherin Levels by Enzyme-Linked Immunosorbent Assay
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Psaty, B.M.; Smith, N.L.; Siscovick, D.S.; Koepsell, T.D.; Weiss, N.S.; Heckbert, S.R.; Lemaitre, R.N.; Wagner, E.H.; Furberg, C.D. Health Outcomes Associated With Antihypertensive Therapies Used as First-Line AgentsA Systematic Review and Meta-analysis. JAMA 1997, 277, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, 1269–1324. [Google Scholar] [PubMed]
- Striessnig, J.; Ortner, N.; Pinggera, A. Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets? Curr. Mol. Pharmacol. 2015, 8, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Godfraind, T. Discovery and Development of Calcium Channel Blockers. Front. Pharmacol. 2017, 8, 286. [Google Scholar] [CrossRef] [PubMed]
- van Geijn, H.P.; Lenglet, J.E.; Bolte, A.C. Nifedipine trials: Effectiveness and safety aspects. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 79–83. [Google Scholar] [CrossRef]
- Khan, K.M.; Patel, J.; Schaefer, T.J. Nifedipine. StatPearls Publishing, Treasure Iland (FL). Available online: https://www.ncbi.nlm.nih.gov/books/NBK537052/ (accessed on 14 December 2020).
- Ross, S.D.; Akhras, K.S.; Zhang, S.; Rozinsky, M.; Nalysnyk, L. Discontinuation of antihypertensive drugs due to adverse events: A systematic review and meta-analysis. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2001, 21, 940–953. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.; Brunet, L.; Roset, P.; Berini, L.; Farré, M.; Mendieta, C. Prevalence and Risk of Gingival Enlargement in Patients Treated With Nifedipine. J. Periodontol. 2001, 72, 605–611. [Google Scholar] [CrossRef]
- Sauget, P.; Monteil, R.A.; Morand, P.; Loubiere, R.; Lapalus, P.; Haudebourg, C. Gingival hyperplasia secondary to the use of calcium antagonists: Analysis. J. Boil. Buccale 1992, 20, 25–32. [Google Scholar]
- Lucas, R.M.; Howell, L.P.; Wall, B.A. Nifedipine-Induced Gingival Hyperplasia: A Histochemical and Ultrastructural Study. J. Periodontol. 1985, 56, 211–215. [Google Scholar] [CrossRef]
- Brunet, L.; Miranda, J.; Roset, P.; Berini, L.; Farré, M.; Mendieta, C. Prevalence and risk of gingival enlargement in patients treated with anticonvulsant drugs. Eur. J. Clin. Investig. 2001, 31, 781–788. [Google Scholar] [CrossRef]
- Dongari-Bagtzoglou, A. Informational Paper: Drug-Associated Gingival Enlargement. J. Periodontol. 2004, 75, 1424–1431. [Google Scholar] [CrossRef]
- Ramírez-Rámiz, A.; Brunet-Llobet, L.; Lahor-Soler, E.; Miranda-Rius, J. On the Cellular and Molecular Mechanisms of Drug-Induced Gingival Overgrowth. Open Dent. J. 2017, 11, 420–435. [Google Scholar] [CrossRef]
- Miranda, J.; Brunet, L.; Roset, P.; Farre, M.; Mendieta, C. Reliability of two measurement indices for gingival enlargement. J. Periodontal Res. 2012, 47, 776–782. [Google Scholar] [CrossRef]
- Bharti, V.; Bansal, C. Drug-induced gingival overgrowth: The nemesis of gingiva unravelled. J. Indian Soc. Periodontol. 2013, 17, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Eslami, M.; Baghaii, F.; Jalayer Nadery, N. An Investigation on gingival hyperplasia induced by nifedipine. J. Dent. 2004, 1, 33–37. [Google Scholar]
- Sunil, P.M.; Nalluswami, J.S.; Sanghar, S.J.; Joseph, I. Nifedipine-induced gingival enlargement: Correlation with dose and oral hygiene. J. Pharm. Bioallied Sci. 2012, 4, S191–S193. [Google Scholar] [CrossRef] [PubMed]
- Trackman, P.; Kantarci, A. Molecular and clinical aspects of drug-induced gingival overgrowth. J. Dent. Res. 2015, 94, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Kanno, C.M.; De Oliveira, J.A.; Ervolino, E.; Soubhia, A.M.P. Effects of cyclosporin, nifedipine and phenytoin on gingival myofibroblast transdifferentiation in monkeys. J. Appl. Oral Sci. 2018, 27, e20180135. [Google Scholar] [CrossRef]
- Dannewitz, B.; Edrich, C.; Tomakidi, P.; Kohl, A.; Gabbert, O.; Steinberg, T.; Staehle, H.-J. Elevated levels of gene expression for collagen and decorin in human gingival overgrowth. J. Clin. Periodontol. 2006, 33, 510–516. [Google Scholar] [CrossRef]
- Kanno, C.M.; Oliveira, J.A.; Garcia, J.F.; Castro, A.L.; Crivelini, M.M. Effects of Cyclosporin, Phenytoin, and Nifedipine on the Synthesis and Degradation of Gingival Collagen in Tufted Capuchin Monkeys (Cebus apella): Histochemical and MMP-1 and -2 and Collagen I Gene Expression Analyses. J. Periodontol. 2008, 79, 114–122. [Google Scholar] [CrossRef]
- Lauritano, D.; Palmieri, A.; Lucchese, A.; Di Stasio, D.; Moreo, G.; Carinci, F. Role of Cyclosporine in Gingival Hyperplasia: An In Vitro Study on Gingival Fibroblasts. Int. J. Mol. Sci. 2020, 21, 595. [Google Scholar] [CrossRef]
- Lauritano, D.; Lucchese, A.; Di Stasio, D.; Della Vella, F.; Cura, F.; Palmieri, A.; Carinci, F. Molecular Aspects of Drug-Induced Gingival Overgrowth: An In Vitro Study on Amlodipine and Gingival Fibroblasts. Int. J. Mol. Sci. 2019, 20, 2047. [Google Scholar] [CrossRef]
- Lauritano, D.; Moreo, G.; Limongelli, L.; Tregambi, E.; Palmieri, A.; Carinci, F. Drug-Induced Gingival Overgrowth: A Pilot Study on the Effect of Diphenylhydantoin and Gabapentin on Human Gingival Fibroblasts. Int. J. Environ. Res. Public Heal. 2020, 17, 8229. [Google Scholar] [CrossRef]
- Pre-treatment with berberine enhances effect of 5-fluorouracil and cisplatin in HEP2 laryngeal cancer cell line. J. Biol. Regul. Homeost. Agents. 2018, 32 (2 Suppl. 1), 167–177.
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Umeizudike, K.A.; Olawuyi, A.B.; Umeizudike, T.I.; Olusegun-Joseph, A.D.; Bello, B.T. Effect of Calcium Channel Blockers on Gingival Tissues in Hypertensive Patients in Lagos, Nigeria: A Pilot Study. Contemp. Clin. Dent. 2017, 8, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Barclay, S.; Thomason, J.M.; Idle, J.R.; Seymour, R.A. The incidence and severity of nifedipine-induced gingival overgrowth. J. Clin. Periodontol. 1992, 19, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Livada, R.; Shiloah, J. Calcium channel blocker-induced gingival enlargement. J. Hum. Hypertens. 2014, 28, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.S.; Arany, P.R. Mechanism of drug-induced gingival overgrowth revisited: A unifying hypothesis. Oral Dis. 2015, 21, e51–e61. [Google Scholar] [CrossRef]
- Wang, X.; Khalil, R.A. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharmacol. 2018, 81, 241–330. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, D.; Moreo, G.; Limongelli, L.; Palmieri, A.; Carinci, F. Drug-Induced Gingival Overgrowth: The Effect of Cyclosporin A and Mycophenolate Mophetil on Human Gingival Fibroblasts. Biomedicines 2020, 8, 221. [Google Scholar] [CrossRef]
- Kataoka, M.; Shimizu, Y.; Kunikiyo, K.; Asahara, Y.; Yamashita, K.; Ninomiya, M.; Morisaki, I.; Oshaki, Y.; Kido, J.-I.; Nagata, T. Cyclosporin A decreases the degradation of type I collagen in rat gingival overgrowth. J. Cell Physiol. 2000, 182, 351–358. [Google Scholar] [CrossRef]
- Kato, T.; Okahashi, N.; Kawai, S.; Kato, T.; Inaba, H.; Morisaki, I.; Amano, A. Impaired Degradation of Matrix Collagen in Human Gingival Fibroblasts by the Antiepileptic Drug Phenytoin. J. Periodontol. 2005, 76, 941–950. [Google Scholar] [CrossRef]
- Kato, T.; Okahashi, N.; Ohno, T.; Inaba, H.; Kawai, S.; Amano, A. Effect of phenytoin on collagen accumulation by human gingival fibroblasts exposed to TNF-alphain vitro. Oral Dis. 2006, 12, 156–162. [Google Scholar] [CrossRef]
- Kataoka, M.; Shimizu, Y.; Kunikiyo, K.; Asahara, Y.; Azuma, H.; Sawa, T.; Kido, J.-I.; Nagata, T. Nifedipine Induces Gingival Overgrowth in Rats Through a Reduction in Collagen Phagocytosis by Gingival Fibroblasts. J. Periodontol. 2001, 72, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Jackson-Boeters, L.; Darling, M.R.; Rieder, M.J.; Hamilton, D. Nifedipine Induces Periostin Expression in Gingival Fibroblasts through TGF-beta. J. Dent. Res. 2013, 92, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Caja, L.; Dituri, F.; Mancarella, S.; Caballero-Diaz, D.; Moustakas, A.; Giannelli, G.; Fabregat, I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int. J. Mol. Sci. 2018, 19, 1294. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.W. Functional role of periostin in development and wound repair: Implications for connective tissue disease. J. Cell Commun. Signal. 2008, 2, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Dreyfuss, J.L.; Veiga, S.S.; Coulson-Thomas, V.J.; Santos, I.A.; Toma, L.; Coletta, R.D.; Nader, H.B. Differences in the expression of glycosaminoglycans in human fibroblasts derived from gingival overgrowths is related to TGF-beta up-regulation. Growth Factors 2009, 28, 24–33. [Google Scholar] [CrossRef]
- Ganesh, P.R. Immunoexpression of interleukin-6 in drug-induced gingival overgrowth patients. Contemp. Clin. Dent. 2016, 7, 140–145. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Protein Summary for NCBI Protein P12830, Cadherin-1. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/protein/P12830 (accessed on 6 January 2021).
- Kantarci, A.; Nseir, Z.; Kim, Y.-S.; Sume, S.S.; Trackman, P. Loss of Basement Membrane Integrity in Human Gingival Overgrowth. J. Dent. Res. 2011, 90, 887–893. [Google Scholar] [CrossRef]
- Sume, S.S.; Kantarci, A.; Lee, A.; Hasturk, H.; Trackman, P.C. Epithelial to Mesenchymal Transition in Gingival Overgrowth. Am. J. Pathol. 2010, 177, 208–218. [Google Scholar] [CrossRef] [PubMed]
Gene | Fold Change | SD | Gene Function |
---|---|---|---|
CD44 | 0.64 | 0.08 | Cell-Cell Adhesion |
CDH1 | 5.62 | 2.06 | Cell-Cell Adhesion |
COL1A2 | 0.77 | 0.12 | Collagens and Extracellular Matrix Structural constituent |
COL2A1 | 0.57 | 0.15 | Collagens and Extracellular Matrix Structural constituent |
COL3A1 | 0.66 | 0.05 | Collagens and Extracellular Matrix Structural constituent |
COL4A1 | 0.85 | 0.14 | Collagens and Extracellular Matrix Structural constituent |
COL5A1 | 0.66 | 0.08 | Collagens and Extracellular Matrix Structural constituent |
COL6A1 | 0.90 | 0.17 | Collagens and Extracellular Matrix Structural constituent |
COL7A1 | 0.55 | 0.19 | Collagens and Extracellular Matrix Structural constituent |
COL8A1 | 0.92 | 0.09 | Collagens and Extracellular Matrix Structural constituent |
COL9A1 | 1.10 | 0.02 | Collagens and Extracellular Matrix Structural constituent |
COL10A1 | 1.54 | 0.06 | Collagens and Extracellular Matrix Structural constituent |
COL11A1 | 0.96 | 0.11 | Collagens and Extracellular Matrix Structural constituent |
CCTNA1 | 0.69 | 0.02 | Cell Adhesion Molecule |
CTNB | 0.67 | 0.07 | Cell Adhesion Molecule |
CTNND2 | 0.96 | 0.30 | Cell Adhesion Molecule |
FN1 | 0.54 | 0.09 | Cell Adhesion Molecule |
HAS1 | 0.68 | 0.09 | Transmembrane Receptor |
ILF3 | 0.62 | 0.07 | Transmembrane Receptor |
ITGA1 | 0.95 | 0.10 | Transmembrane Receptor |
ITGA2 | 1.19 | 0.18 | Transmembrane Receptor |
ITGA3 | 0.88 | 0.15 | Transmembrane Receptor |
ITGA4 | 0.61 | 0.10 | Transmembrane Receptor |
ITGA5 | 0.70 | 0.03 | Transmembrane Receptor |
ITGA6 | 0.41 | 0.04 | Transmembrane Receptor |
ITGA7 | 1.48 | 0.31 | Transmembrane Receptor |
ITGA8 | 0.59 | 0.06 | Transmembrane Receptor |
ITGB1 | 0.87 | 0.09 | Transmembrane Receptor |
ITGB2 | 0.73 | 0.07 | Transmembrane Receptor |
ITGB4 | 0.23 | 0.03 | Transmembrane Receptor |
ITGB5 | 0.75 | 0.06 | Transmembrane Receptor |
LAMA1 | 0.45 | 0.04 | Basement Membrane Constituent |
LAMA2 | 1.06 | 0.19 | Basement Membrane Constituent |
LAMA3 | 0.64 | 0.08 | Basement Membrane Constituent |
LAMB1 | 0.39 | 0.02 | Basement Membrane Constituent |
LAMB2 | 0.75 | 0.10 | Basement Membrane Constituent |
LAMB3 | 0.88 | 0.11 | Basement Membrane Constituent |
MMP2 | 0.73 | 0.10 | Extracellular Matrix Protease |
MMP3 | 0.90 | 0.08 | Extracellular Matrix Protease |
MMP7 | 1.03 | 0.42 | Extracellular Matrix Protease |
MMP8 | 3.98 | 1.47 | Extracellular Matrix Protease |
MMP9 | 1.04 | 0.35 | Extracellular Matrix Protease |
MMP10 | 1.24 | 0.05 | Extracellular Matrix Protease |
MMP11 | 0.14 | 0.05 | Extracellular Matrix Protease |
MMP12 | 1.20 | 0.13 | Extracellular Matrix Protease |
MMP13 | 1.14 | 0.19 | Extracellular Matrix Protease |
MMP14 | 0.96 | 0.07 | Extracellular Matrix Protease |
MMP15 | 1.90 | 0.08 | Extracellular Matrix Protease |
MMP16 | 0.38 | 0.04 | Extracellular Matrix Protease |
MMP24 | 9.68 | 1.05 | Extracellular Matrix Protease |
MMP26 | 0.31 | 0.01 | Extracellular Matrix Protease |
TGFB1 | 0.88 | 0.14 | Transforming growth factor β Signaling |
TGFB2 | 1.20 | 0.12 | Transforming growth factor β Signaling |
TGFB3 | 0.62 | 0.02 | Transforming growth factor β Signaling |
TIMP1 | 0.76 | 0.11 | Extracellular Matrix Protease Inhibitor |
VCAN | 0.75 | 0.03 | Cell Adhesion Molecule |
RPL13 | 1.00 | 0.00 | Housekeeping gene |
Gene | Fold Change | SD | Gene Function |
---|---|---|---|
CDH1 | 5.62 | 2.06 | Cell-Cell Adhesion |
ITGA6 | 0.41 | 0.04 | Transmembrane Receptor |
ITGB4 | 0.23 | 0.03 | Transmembrane Receptor |
LAMA1 | 0.45 | 0.04 | Basement Membrane Constituent |
LAMB1 | 0.39 | 0.02 | Basement Membrane Constituent |
MMP8 | 3.98 | 1.47 | Extracellular Matrix Protease |
MMP11 | 0.14 | 0.05 | Extracellular Matrix Protease |
MMP16 | 0.38 | 0.04 | Extracellular Matrix Protease |
MMP24 | 9.68 | 1.05 | Extracellular Matrix Protease |
MMP26 | 0.31 | 0.01 | Extracellular Matrix Protease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauritano, D.; Moreo, G.; Vella, F.D.; Palmieri, A.; Carinci, F.; Petruzzi, M. Biology of Drug-Induced Gingival Hyperplasia: In Vitro Study of the Effect of Nifedipine on Human Fibroblasts. Appl. Sci. 2021, 11, 3287. https://doi.org/10.3390/app11073287
Lauritano D, Moreo G, Vella FD, Palmieri A, Carinci F, Petruzzi M. Biology of Drug-Induced Gingival Hyperplasia: In Vitro Study of the Effect of Nifedipine on Human Fibroblasts. Applied Sciences. 2021; 11(7):3287. https://doi.org/10.3390/app11073287
Chicago/Turabian StyleLauritano, Dorina, Giulia Moreo, Fedora Della Vella, Annalisa Palmieri, Francesco Carinci, and Massimo Petruzzi. 2021. "Biology of Drug-Induced Gingival Hyperplasia: In Vitro Study of the Effect of Nifedipine on Human Fibroblasts" Applied Sciences 11, no. 7: 3287. https://doi.org/10.3390/app11073287
APA StyleLauritano, D., Moreo, G., Vella, F. D., Palmieri, A., Carinci, F., & Petruzzi, M. (2021). Biology of Drug-Induced Gingival Hyperplasia: In Vitro Study of the Effect of Nifedipine on Human Fibroblasts. Applied Sciences, 11(7), 3287. https://doi.org/10.3390/app11073287