Microwave Performance, Microstructure, and Crystallization of (Mg0.6Zn0.4)1−yNiyTiO3 Ilmenite Ceramics
Abstract
1. Introduction
2. Experimental Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sebastian, M.T.; Ubic, R.; Jantunen, H. Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 2015, 60, 392–412. [Google Scholar] [CrossRef]
- Itaalit, B.; Mouyane, M.; Bernard, J.; Womes, M.; Houivet, D. Effect of Post-Annealing on the Microstructure and Microwave Dielectric Properties of Ba(Co0.7Zn0.3)1/3Nb2/3O3 Ceramics. Appl. Sci. 2016, 6, 2. [Google Scholar] [CrossRef]
- Guha, D.; Gajera, H.; Kumar, C. Cross-Polarized Radiation in a Cylindrical Dielectric Resonator Antenna: Identification of Source, Experimental Proof, and Its Suppression. IEEE Trans. Antennas Propag. 2015, 63, 1863–1867. [Google Scholar] [CrossRef]
- Achouri, K.; Yahyaoui, A.; Gupta, S.; Rmili, H.; Caloz, C. Dielectric resonator metasurface for dispersion engineering. IEEE Trans. Antennas. Propag. 2016, 62, 673–680. [Google Scholar] [CrossRef]
- Weng, M.H.; Liauh, C.T.; Lin, S.M.; Wang, H.H.; Yang, R.Y. Sintering Behaviors Microstructure and Microwave Dielectric Properties of CaTiO3-LaAlO3 Ceramics Using CuO/B2O3 Additions. Materials 2019, 12, 4187. [Google Scholar] [CrossRef]
- Belous, A.; Ovchar, O.; Jancar, B.; Spreitzer, M.; Annino, G.; Grebennikov, D.; Mascher, P. The Effect of Chemical Composition on the Structure and Dielectric Properties of the Columbites A2+Nb2O6. J. Electrochem. Soc. 2009, 156, 206–212. [Google Scholar] [CrossRef]
- George, S.; Sebastian, M.T. The Effect of Added Sintering Aids on Microwave Dielectric Properties of Li2(Zn0.9Ca0.1)Ti3O8 Ceramics and Applications. J. Eur. Ceram. Soc. 2010, 30, 2585–2592. [Google Scholar] [CrossRef]
- Shen, C.H.; Pan, C.L.; Lin, S.-H. A Study of the Effect of Sintering Conditions of Mg0.95Ni0.05Ti3 on Its Physical and Dielectric Properties. Molecules 2020, 25, 5988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, L.; Xia, W.; Liao, Q. Structure and properties analysis for MgTiO3 and (Mg0.97M0.03)TiO3 (M = Ni, Zn, Co and Mn) microwave dielectric materials. J. Alloy. Compd. 2012, 537, 76–79. [Google Scholar] [CrossRef]
- Wakino, K. Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 1989, 91, 69–86. [Google Scholar] [CrossRef]
- Kim, H.T.; Byun, J.D.; Kim, Y. Microstructure and Microwave Dielectric Properties of Modified Zinc Titanates (I). Mater. Res. Bull. 1998, 33, 963–973. [Google Scholar] [CrossRef]
- Kim, H.T.; Nahm, S.; Byun, J.D.; Kim, Y. Low-Fired (Zn, Mg)TiO3 Microwave Dielectrics. J. Am. Ceram. Soc. 1999, 82, 3476–3480. [Google Scholar] [CrossRef]
- Sohn, J.H.; Inaguma, Y.; Yoon, S.O.; Itoh, M.; Nakamura, T.; Yoon, S.J.; Kim, H.J. Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values. Jpn, J. Appl. Phys. 1994, 33, 5466–5470. [Google Scholar] [CrossRef]
- Jo, H.J.; Kim, J.S.; Kim, E.S. Microwave dielectric properties of MgTiO3-based ceramics. Ceram. Int. 2015, 41, 530–553. [Google Scholar] [CrossRef]
- Huang, C.L.; Shen, C.H. Dielectric Properties and Applications of Low Loss (1-x)(Mg0.95Co0.05)TiO3-xCa0.8Sm0.4/3TiO3 Ceramic System at Microwave Frequency. J. Alloy. Comp. 2009, 468, 516–521. [Google Scholar] [CrossRef]
- Tang, B.; Xiang, Q.; Fang, Z.; Zhang, X.; Xiong, Z.; Lid, H.; Yuan, C.; Zhang, S. Influence of Cr3+ substitution for Mg2+ on the crystal structure and microwave dielectric properties of CaMg1-xCr2x/3Si2O6 ceramics. Ceram. Int. 2019, 45, 11484–11490. [Google Scholar] [CrossRef]
- Shen, C.H.; Huang, C.L. Microwave dielectric properties and sintering behaviors of (Mg0.95Ni0.05)TiO3-CaTiO3 ceramic system. J. Alloy. Compd. 2009, 472, 451–455. [Google Scholar] [CrossRef]
- Chen, Y.B.; Tseng, Z.L.; Chen, L.C.; Lin, C.C.; Miao, H.Y.; Liu, J.H.; Lin, S.H. Crystal structure and microwave dielectric properties of [(Mg0.6Zn0.4)0.95Co0.05]2TiO4-modified Ca0.6La0.8/3TiO3 cordierite ceramics with a near-zero temperature coefficient. J. Mater. Sci. Mater. Electron. 2018, 29, 10709–10714. [Google Scholar] [CrossRef]
- Huang, C.L.; Tseng, Y.W. A low-loss dielectric using CaTiO3-modified Mg1.8Ti1.1O4 ceramics for applications in dielectric resonator antenna. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2293–2300. [Google Scholar] [CrossRef]
- Huang, C.L.; Tseng, C.F.; Chen, Y.B.; Cheng, Y.C. New dielectric material system of (Mg0.95Zn0.05)TiO3–Ca0.61Nd0.26TiO3 at microwave frequency. J. Alloys Compd. 2008, 453, 337–340. [Google Scholar] [CrossRef]
- Lin, S.H.; Chen, Y.B. Structure and characterization of B2O3 modified yNd(Mg1/2Ti1/2)O3-(1−y)Ca0.8Sr0.2TiO3 ceramics with a near-zero temperature coefficient at microwave frequency. Ceram. Int. 2017, 43, 2368–2371. [Google Scholar] [CrossRef]
- Yang, W.R.; Huang, C.L.; Chen, Y.R. Microwave and Optical Technology Letters, John Wiley. In Proceedings of the IEEE APMC, Yokohama, Japan, 12–15 December 2006; pp. 1398–1401. [Google Scholar]
- Fiedziuszko, S.J. Dielectric materials, devices, and circuits. IEEE Trans Microw. Theory Tech. 2002, 50, 706–720. [Google Scholar] [CrossRef]
- Nakagoshi, Y.; Suzuki, Y. Dimensional change behavior of porous MgTi2O5 in reactive sintering. Ceram. Int. 2017, 43, 5541–5546. [Google Scholar] [CrossRef]
- Suzuki, Y.; Suzuki, T.S.; Shinoda, Y.; Yoshida, K. Uniformly porous MgTi2O5 with narrow pore-size distribution: XAFS Study, Improved in situ synthesis, and new in situ surface coating. Adv. Eng. Mater. 2012, 14, 1134–1138. [Google Scholar] [CrossRef]
- Shen, C.H.; Huang, C.L. Phase Evolution and Dielectric Properties of (Mg0.95M2+0.05)Ti2O5 (M2+ = Co, Ni, and Zn) Ceramics at Microwave Frequencies. J. Am. Ceram. Soc. 2009, 92, 384–388. [Google Scholar]
- Kuszyk, J.A.; Bradt, R.C. Influence of Grain Size on Effects of Thermal Expansion Anisotropy in MgTi2O5. J. Am. Ceram. Soc. 1973, 56, 420–423. [Google Scholar] [CrossRef]
- Hakki, B.W.; Coleman, P.D. A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range. IEEE Trans. Microw. Theory Tech. 1960, 8, 402–410. [Google Scholar] [CrossRef]
- Courtney, W.E. Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators. IEEE Trans. Microw. Theory Tech. 1970, 18, 476–485. [Google Scholar] [CrossRef]
- Liao, J.; Senna, M. Crystallization of titania and magnesium titanate from mechanically activated Mg(OH)2 and TiO2 gel mixture. Mater. Res. Bull. 1995, 30, 385–392. [Google Scholar] [CrossRef]
- Huang, C.L.; Pan, C.L. Low Temperature Sintering and Microwave Dielectric Properties of (1-x)MgTiO3-xCaTiO3 Ceramics Using Bismuth Additions. Jpn. J. Appl. Phys. 2002, 41, 707–711. [Google Scholar] [CrossRef]
- Nakagoshi, Y.; Sato, J.; Morimoto, M.; Suzuki, Y. Near-zero volume-shrinkage in reactive sintering of porous MgTi2O5 with pseudobrookite-type structure. Ceram. Int. 2016, 42, 9139–9144. [Google Scholar] [CrossRef][Green Version]
- Lin, S.H.; Chen, Y.B. Crystal structure and microwave dielectric properties of [(Mg0.6Zn0.4)0.95Co0.05]2TiO4 modified Ca0.8Sm0.4/3TiO3 ceramics. Ceram. Int. 2017, 43, 296–300. [Google Scholar] [CrossRef]
- Silverman, B.D. Microwave Absorption in Cubic Strontium Titanate. Phys. Rev. 1962, 125, 1921. [Google Scholar] [CrossRef]
- Penn, S.J.; Alford, N.M.; Templeton, A.; Wang, X.; Xu, M.; Reece, M.; Schrapel, K. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. 1997, 80, 1885–1888. [Google Scholar] [CrossRef]
- Cho, W.W.; Kakimoto, K.; Sato, H.O. High-Q Microwave Dielectric SrTiO3-Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency. Jpn. J. Appl. Phys. 2004, 43, 6221–6224. [Google Scholar] [CrossRef]
y | Sintering | a (nm) | c (nm) |
---|---|---|---|
Value | Temperature (°C) | ||
0.01 | 1175 | 0.50656 ± 0.00051 | 1.39113 ± 0.00082 |
1200 | 0.50702 ± 0.00900 | 1.39242 ± 0.00146 | |
1225 | 0.50481 ± 0.00055 | 1.38946 ± 0.00089 | |
0.03 | 1175 | 0.50650 ± 0.00079 | 1.39209 ± 0.00170 |
1200 | 0.50713 ± 0.00057 | 1.39041 ± 0.00121 | |
1225 | 0.50689 ± 0.00054 | 1.39147 ± 0.00087 | |
0.05 | 1175 | 0.50671 ± 0.00057 | 1.39158 ± 0.00122 |
1200 | 0.50670 ± 0.00032 | 1.39196 ± 0.00069 | |
1225 | 0.50545 ± 0.00063 | 1.39144 ± 0.00103 | |
0.07 | 1175 | 0.50632 ± 0.00045 | 1.39188 ± 0.00096 |
1200 | 0.50585 ± 0.00106 | 1.38861 ± 0.00227 | |
1225 | 0.50565 ± 0.00039 | 1.39175 ± 0.00064 | |
0.1 | 1200 | 0.50577 ± 0.00068 | 1.39031 ± 0.00110 |
0.2 | 1200 | 0.50593 ± 0.00090 | 1.38992 ± 0.00146 |
y Value | S.T. | Density | εr | Q f | τf |
---|---|---|---|---|---|
0.01 | 1200 °C/4 h | 4.35 | 18.7 | 120,000 | −66.5 |
0.03 | 1200 °C/4 h | 4.36 | 18.8 | 140,000 | −67.4 |
0.05 | 1200 °C/4 h | 4.39 | 19.3 | 165,000 | −65.4 |
0.07 | 1200 °C/4 h | 4.37 | 19 | 155,000 | −66 |
0.1 | 1200 °C/4 h | 4.27 | 18.9 | 135,000 | −59.7 |
0.2 | 1200 °C/4 h | 4.25 | 18.6 | 90,000 | −57.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.-H.; Pan, C.-L.; Lin, S.-H.; Ho, C.-C. Microwave Performance, Microstructure, and Crystallization of (Mg0.6Zn0.4)1−yNiyTiO3 Ilmenite Ceramics. Appl. Sci. 2021, 11, 2952. https://doi.org/10.3390/app11072952
Shen C-H, Pan C-L, Lin S-H, Ho C-C. Microwave Performance, Microstructure, and Crystallization of (Mg0.6Zn0.4)1−yNiyTiO3 Ilmenite Ceramics. Applied Sciences. 2021; 11(7):2952. https://doi.org/10.3390/app11072952
Chicago/Turabian StyleShen, Chun-Hsu, Chung-Long Pan, Shih-Hung Lin, and Cheng-Che Ho. 2021. "Microwave Performance, Microstructure, and Crystallization of (Mg0.6Zn0.4)1−yNiyTiO3 Ilmenite Ceramics" Applied Sciences 11, no. 7: 2952. https://doi.org/10.3390/app11072952
APA StyleShen, C.-H., Pan, C.-L., Lin, S.-H., & Ho, C.-C. (2021). Microwave Performance, Microstructure, and Crystallization of (Mg0.6Zn0.4)1−yNiyTiO3 Ilmenite Ceramics. Applied Sciences, 11(7), 2952. https://doi.org/10.3390/app11072952