Generating DNA Origami Nanostructures through Shape Annealing
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Shape Annealing: Optimization with Shape Grammars
2.2. Optimization by Simulated Annealing
2.3. Shape Grammars
2.4. Shape Annealing
Algorithm 1 Shape annealing algorithm | |
1: | initialize T, limit, n, α |
2: | generate initial_shape |
3: | state = evaluate(initial_shape) |
4: | procedure Shape Anneal(state, T, limit, n, α) t→ key parameters |
5: | while T > 0 do |
6: | success=0, i =0 |
7: | for i to n do t→ mutations=n |
8: | prev_state=state |
9: | new_shape=random_rule() |
10: | if new_shape complies with constraints then |
11: | new_state=evaluate(new_shape) |
12: | test = metropolis(new_state, prev_state, T) |
13: | if test then |
14: | state=new_state |
15: | success += 1 |
16: | end if |
17: | end if |
18: | if success>limit then |
19: | break |
20: | end if |
21: | end for |
22: | if success=0 then t→ equilibrium |
23: | break |
24: | end if |
25: | T = T*α |
26: | end while |
27: | end procedure |
2.5. Coarse-Grain Simulations
3. Applications
3.1. Filling Application
3.2. Coating Application
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Seeman, N.C. Nucleic Acid Junctions and Lattices. J. Theor. Biol. 1982, 99, 237–247. [Google Scholar] [CrossRef]
- Rothemund, P.W.K. Folding DNA to Create Nanoscale Shapes and Patterns. Nature 2006, 440, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Seeman, N.C.; Sleiman, H.F. DNA Nanotechnology. Nat. Rev. Mater. 2017, 3, 1–23. [Google Scholar] [CrossRef]
- Tørring, T.; Gothelf, K.V. DNA Nanotechnology: A Curiosity or a Promising Technology? F1000Prime Rep. 2013, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, C.E.; Kilchherr, F.; Kim, D.-N.; Shiao, E.L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H. A Primer to Scaffolded DNA Origami. Nat. Methods 2011, 8, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Selnihhin, D.; Sparvath, S.M.; Preus, S.; Birkedal, V.; Andersen, E.S. Multifluorophore DNA Origami Beacon as a Biosensing Platform. ACS Nano 2018, 12, 5699–5708. [Google Scholar] [CrossRef]
- Thubagere, A.J.; Li, W.; Johnson, R.F.; Chen, Z.; Doroudi, S.; Lee, Y.L.; Izatt, G.; Wittman, S.; Srinivas, N.; Woods, D.; et al. A Cargo-Sorting DNA Robot. Science 2017, 357, eaan6558. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.M.; Bachelet, I.; Church, G.M. A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads. Science 2012, 335, 831–834. [Google Scholar] [CrossRef]
- Douglas, S.M.; Marblestone, A.H.; Teerapittayanon, S.; Vazquez, A.; Church, G.M.; Shih, W.M. Rapid Prototyping of 3D DNA-Origami Shapes with CaDNAno. Nucleic Acids Res. 2009, 37, 5001–5006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Arias, D.S.; Deserno, M.; Ren, X.; Taylor, R.E. Emerging Applications at the Interface of DNA Nanotechnology and Cellular Membranes: Perspectives from Biology, Engineering, and Physics. APL Bioeng. 2020, 4, 041507. [Google Scholar] [CrossRef] [PubMed]
- Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA Rendering of Polyhedral Meshes at the Nanoscale. Nature 2015, 523, 441–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veneziano, R.; Ratanalert, S.; Zhang, K.; Zhang, F.; Yan, H.; Chiu, W.; Bathe, M. Designer Nanoscale DNA Assemblies Programmed from the Top Down. Science 2016, 352, 1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, H.; Zhang, F.; Shepherd, T.; Ratanalert, S.; Qi, X.; Yan, H.; Bathe, M. Autonomously Designed Free-Form 2D DNA Origami. Sci. Adv. 2019, 5, eaav0655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, H.; Shepherd, T.R.; Zhang, K.; Bricker, W.P.; Li, S.; Chiu, W.; Bathe, M. Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges. ACS Nano 2019, 13, 2083–2093. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-M.; Kucinic, A.; Johnson, J.A.; Su, H.-J.; Castro, C.E. Integrating Computer-Aided Engineering and Computer-Aided Design for DNA Assemblies. bioRxiv 2020. [Google Scholar] [CrossRef]
- Majikes, J.M.; Liddle, J.A. DNA Origami Design: A How-To Tutorial. J. Res. Natl. Inst. Stan. 2020, 126, 126001. [Google Scholar] [CrossRef]
- Cagan, J.; Mitchell, W.J. Optimally Directed Shape Generation by Shape Annealing. Environ. Plan. B 1993, 20, 5–12. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Stiny, G. Introduction to Shape and Shape Grammars. Environ. Plan. B 1980, 7, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Boulais, E.; Hakobyan, Y.; Wang, W.L.; Guan, A.; Bathe, M.; Yin, P. Casting Inorganic Structures with DNA Molds. Science 2014, 346, 1258361. [Google Scholar] [CrossRef] [Green Version]
- Cagan, J.; Shimada, K.; Yin, S. A Survey of Computational Approaches to Three-Dimensional Layout Problems. Comput. Aided Des. 2002, 34, 597–611. [Google Scholar] [CrossRef] [Green Version]
- Elperin, T. Monte Carlo Structural Optimization in Discrete Variables with Annealing Algorithm. Int. J. Numer. Methods Eng. 1988, 26, 815–821. [Google Scholar] [CrossRef]
- Rutenbar, R.A. Simulated Annealing Algorithms: An Overview. IEEE Circuits Devices Mag. 1989, 5, 19–26. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.D.; Romeo, F.; Sangiovanni-Vincentelli, A.S. An Efficient General Cooling Schedule for Simulated Annealing. In Proceedings of the IEEE International Conference on Computer-Aided Design, Santa Clara, CA, USA, 10–13 November 1986; pp. 381–384. [Google Scholar]
- Triki, E.; Collette, Y.; Siarry, P. A Theoretical Study on the Behavior of Simulated Annealing Leading to a New Cooling Schedule. Eur. J. Oper. Res. 2005, 166, 77–92. [Google Scholar] [CrossRef]
- Agarwal, M.; Cagan, J.; Stiny, G. A Micro Language: Generating MEMS Resonators by Using a Coupled Form—Function Shape Grammar. Environ. Plan. B Plan. Des. 2000, 27, 615–626. [Google Scholar] [CrossRef]
- Shea, K.; Cagan, J. Languages and Semantics of Grammatical Discrete Structures. Artif. Intell. Eng. Des. Anal. Manuf. 1999, 13, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Cagan, J. Shape Annealing Solution to the Constrained Geometric Knapsack Problem. Comput. Aided Des. 1994, 26, 763–770. [Google Scholar] [CrossRef]
- Šulc, P.; Romano, F.; Ouldridge, T.E.; Rovigatti, L.; Doye, J.P.K.; Louis, A.A. Sequence-Dependent Thermodynamics of a Coarse-Grained DNA Model. J. Chem. Phys. 2012, 137, 135101. [Google Scholar] [CrossRef]
- Ouldridge, T.E.; Louis, A.A.; Doye, J.P.K. Structural, Mechanical, and Thermodynamic Properties of a Coarse-Grained DNA Model. J. Chem. Phys. 2011, 134, 085101. [Google Scholar] [CrossRef] [Green Version]
- Engel, M.C.; Smith, D.M.; Jobst, M.A.; Sajfutdinow, M.; Liedl, T.; Romano, F.; Rovigatti, L.; Louis, A.A.; Doye, J.P.K. Force-Induced Unravelling of DNA Origami. ACS Nano 2018, 12, 6734–6747. [Google Scholar] [CrossRef]
- Huang, C.-M.; Kucinic, A.; Le, J.V.; Castro, C.E.; Su, H.-J. Uncertainty Quantification of a DNA Origami Mechanism Using a Coarse-Grained Model and Kinematic Variance Analysis. Nanoscale 2019, 11, 1647–1660. [Google Scholar] [CrossRef] [PubMed]
- Snodin, B.E.K.; Schreck, J.S.; Romano, F.; Louis, A.A.; Doye, J.P.K. Coarse-Grained Modelling of the Structural Properties of DNA Origami. Nucleic Acids Res. 2019, 47, 1585–1597. [Google Scholar] [CrossRef] [Green Version]
- Suma, A.; Stopar, A.; Nicholson, A.W.; Castronovo, M.; Carnevale, V. Global and Local Mechanical Properties Control Endonuclease Reactivity of a DNA Origami Nanostructure. Nucleic Acids Res. 2020, 48, 4672–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doye, J.P.K.; Fowler, H.; Prešern, D.; Bohlin, J.; Rovigatti, L.; Romano, F.; Šulc, P.; Wong, C.K.; Louis, A.A.; Schreck, J.S.; et al. The OxDNA Coarse-Grained Model as a Tool to Simulate DNA Origami. arXiv 2020, arXiv:2004.05052. [Google Scholar]
- Doty, D.; Lee, B.L.; Stérin, T. Scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures. arXiv 2020, arXiv:2005.11841. [Google Scholar]
- Suma, A.; Poppleton, E.; Matthies, M.; Šulc, P.; Romano, F.; Louis, A.A.; Doye, J.P.K.; Micheletti, C.; Rovigatti, L. TacoxDNA: A User-Friendly Web Server for Simulations of Complex DNA Structures, from Single Strands to Origami. J. Comput. Chem. 2019, 40, 2586–2595. [Google Scholar] [CrossRef]
- Poppleton, E.; Bohlin, J.; Matthies, M.; Sharma, S.; Zhang, F.; Šulc, P. Design, Optimization and Analysis of Large DNA and RNA Nanostructures through Interactive Visualization, Editing and Molecular Simulation. Nucleic Acids Res. 2020, 48, e72. [Google Scholar] [CrossRef]
- Bayrak, T.; Helmi, S.; Ye, J.; Kauert, D.; Kelling, J.; Schönherr, T.; Weichelt, R.; Erbe, A.; Seidel, R. DNA-Mold Templated Assembly of Conductive Gold Nanowires. Nano Lett. 2018, 18, 2116–2123. [Google Scholar] [CrossRef]
- Ramachandran, P.; Varoquaux, G. Mayavi: 3D Visualization of Scientific Data. Comput. Sci. Eng. 2011, 13, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.; Bellot, G.; Voigt, N.V.; Fradkov, E.; Shih, W.M. Two Design Strategies for Enhancement of Multilayer–DNA-Origami Folding: Underwinding for Specific Intercalator Rescue and Staple-Break Positioning. Chem. Sci. 2012, 3, 2587–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992; ISBN 978-0-262-27555-2. [Google Scholar]
- Yogev, O.; Shapiro, A.A.; Antonsson, E.K. Computational Evolutionary Embryogeny. Trans. Evol. Comp. 2010, 14, 301–325. [Google Scholar] [CrossRef] [Green Version]
Mesh | Length [nm] | Width [nm] | Height [nm] | |
---|---|---|---|---|
tetrahedron | 21.7 | 25.0 | 20.4 | 1840 |
snub cube | 20.6 | 21.2 | 21.1 | 4010 |
Stanford bunny | 32.4 | 26.0 | 32.2 | 7380 |
Mesh | Average [Segments] | Std. Dev. | |
---|---|---|---|
tetrahedron | total | 875 | 159 |
top | 1073 | 35 | |
snub cube | total | 1076 | 135 |
top | 1242 | 36 | |
Stanford bunny | total | 1540 | 408 |
top | 1981 | 84 |
Mesh | Average [Segments] | Std. Dev. | |
---|---|---|---|
tetrahedron | total | 340 | 160 |
top | 5 | 48 | |
snub cube | total | 858 | 256 |
top | 1134 | 54 | |
Stanford bunny | total | 819 | 222 |
top | 1086 | 81 |
Application | Temperature (T) | Limit | α | Mutations (n) |
---|---|---|---|---|
filling | 80.00 | 35 | 0.99 | 310 |
coating | 90.00 | 35 | 0.98 | 310 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babatunde, B.; Arias, D.S.; Cagan, J.; Taylor, R.E. Generating DNA Origami Nanostructures through Shape Annealing. Appl. Sci. 2021, 11, 2950. https://doi.org/10.3390/app11072950
Babatunde B, Arias DS, Cagan J, Taylor RE. Generating DNA Origami Nanostructures through Shape Annealing. Applied Sciences. 2021; 11(7):2950. https://doi.org/10.3390/app11072950
Chicago/Turabian StyleBabatunde, Bolutito, D. Sebastian Arias, Jonathan Cagan, and Rebecca E. Taylor. 2021. "Generating DNA Origami Nanostructures through Shape Annealing" Applied Sciences 11, no. 7: 2950. https://doi.org/10.3390/app11072950