Balneotherapy with the Use of Radon–Sulphide Water: The Mechanisms of Therapeutic Effect
Abstract
1. Introduction
2. The Mechanism of the Therapeutic Effect of Radon–Sulphide Water
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fistek, J. Wody termalne uzdrowisk dolnośląskich szansą dla poprawy ochrony środowiska i rozwoju lecznictwa uzdrowiskowego. Balneol. Pol. 1995, 37, 84–89. [Google Scholar]
- Kozłowska-Szczęsna, T. Zasoby lecznicze uzdrowisk w Polsce. Balneol. Pol. 1997, 39, 122–133. [Google Scholar]
- Ziemska, J.; Szynal, T.; Mazańska, M.; Solecka, J. Natural medicinal resources and their therapeutic applications. Rocz. Panst. Zakł. Hig. 2019, 70, 407–413. [Google Scholar]
- Gutenbrunner, C.; Bender, T.; Cantista, P.; Karagülle, Z. A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology. Int. J. Biometeorol. 2010, 54, 495–507. [Google Scholar] [CrossRef]
- Santos, I.; Cantista, P.; Vasconcelos, C. Balneotherapy in rheumatoid arthritis-a systematic review. Int. J. Biometeorol. 2016, 60, 1287–1301. [Google Scholar] [CrossRef]
- Matsumoto, S. Evaluation of the role of balneotherapy in rehabilitation medicine. J. Nippon. Med. Sch. 2018, 85, 196–203. [Google Scholar] [CrossRef]
- Costantino, M.; Conti, V.; Corbi, G.; Marongiu, F.; Marongiu, M.B.; Filippelli, A. Sulphurous mud-bath therapy for treatment of chronic low back pain caused by lumbar spine osteoarthritis. Intern. Emerg. Med. 2019, 14, 187–190. [Google Scholar] [CrossRef]
- Costantino, M.; Izzo, V.; Conti, V.; Manzo, V.; Guida, A.; Filippelli, A. Sulphate mineral waters: A medical resource in several disorders. J. Tradit. Complement. Med. 2019, 10, 320–326. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, L.; Song, S.; Pan, L.; Muhammad Arslan, I.; Chen, Y.; Yang, S. Hydrogen sulfide: Recent progress and perspectives for the treatment of dermatological diseases. J. Adv. Res. 2020, 27, 11–17. [Google Scholar] [CrossRef]
- Karagülle, M.Z.; Karagülle, M. Effects of drinking natural hydrogen sulfide (H2S) waters: A systematic review of in vivo animal studies. Int. J. Biometeorol. 2020, 64, 1011–1022. [Google Scholar] [CrossRef]
- Cheleschi, S.; Gallo, I.; Tenti, S. A comprehensive analysis to understand the mechanism of action of balneotherapy: Why, how, and where they can be used? Evidence from in vitro studies performed on human and animal samples. Int. J. Biometeorol. 2020, 64, 1247–1261. [Google Scholar] [CrossRef]
- Huang, A.; Seité, S.; Adar, T. The use of balneotherapy in dermatology. Clin. Dermatol. 2018, 36, 363–368. [Google Scholar] [CrossRef]
- Carbajo, J.M.; Maraver, F. Salt water and skin interactions: New lines of evidence. Int. J. Biometeorol. 2018, 62, 1345–1360. [Google Scholar] [CrossRef]
- Bajgai, J.; Fadriquela, A.; Ara, J.; Begum, R.; Ahmed, M.F.; Kim, C.S.; Kim, S.K.; Shim, K.Y.; Lee, K.J. Balneotherapeutic effects of high mineral spring water on the atopic dermatitis-like inflammation in hairlessmice via immunomodulation and redox balance. BMC Complement. Altern. Med. 2017, 17, 481. [Google Scholar] [CrossRef]
- Korczak, M.; Owczarek, J. The healing properties of sulphurous waters. Acta Balneol. 2014, 2, 106–108. [Google Scholar]
- Fioravanti, A.; Manica, P.; Bortolotti, R.; Cevenini, G.; Tenti, S.; Paolazzi, G. Is balneotherapy effective for fibromyalgia? Results from a 6-month double-blind randomized clinical trial. Clin. Rheumatol. 2018, 37, 2203–2212. [Google Scholar] [CrossRef]
- Eröksüz, R.; Erol Forestier, F.B.; Karaaslan, F.; Forestier, R.; İşsever, H.; Erdoğan, N.; Karagülle, M.Z.; Dönmez, A. Comparison of intermittent and consecutive balneological outpatient treatment (hydrotherapy and peloidotherapy) in fibromyalgia syndrome: A randomized, single-blind, pilot study. Int. J. Biometeorol. 2020, 64, 513–520. [Google Scholar] [CrossRef]
- Ma, T.; Song, X.; Ma, Y.; Hu, H.; Bai, H.; Li, Y.; Gao, L. The effect of thermal mineral waters on pain relief, physical function and quality of life in patients with osteoarthritis: A systematic review and meta-analysis. Med. (Baltim.) 2021, 100, e24488. [Google Scholar] [CrossRef]
- Bin, P.; Huang, R.; Zhou, X. Oxidation resistance of the sulfur amino acids: Methionine and cysteine. Biomed Res. Int. 2017, 2017, 9584932. [Google Scholar] [CrossRef]
- Bugajski, W. Wpływ Kompleksowego Leczenia Uzdrowiskowego w Busku Zdroju na Aktywność, Enzymatyczność Obrony Antyoksydacyjnej oraz Wybrane Parametry Laboratoryjne u Chorych w Przebiegu Dyskopatii i Zmian Zwyrodnieniowych Kręgosłupa. Ph.D. Thesis, Medical University of Lodz, Łódź, Poland, 1999. [Google Scholar]
- Solecki, B. Ocena Obrony Antyosydacyjnej i Peroksydacji Lipidów u Chorych z Reumatoidalnym Zapaleniem Stawów i Chorobą Zwyrodnieniową Stawów Leczonych Uzdrowiskowo w Busku Zdroju. Ph.D. Thesis, Medical University of Lodz, Łódź, Poland, 2000. [Google Scholar]
- Grabski, M. Wpływ wód Siarczkowo-Siarkowodorowych Słonych na Wybrane Wskaźniki Obrony Antyoksydacynej i Peroksydację Lipidów Krwinek Czerwonych u Chorych z Reumatoidalnym Zapaleniem Stawów In Vitro. Ph.D. Thesis, Medical University of Lodz, Łódź, Poland, 1999. [Google Scholar]
- Misztela, A.; Kuliński, W.; Rybak, T.; Mróz, A. Zastosowanie sztucznych kąpieli siarczkowo-siarkowodorowych w leczeniu reumatoidalnego zapalenia stawów. Balneol. Pol. 1999, 41, 45–50. [Google Scholar]
- Coavoy-Sánchez, S.A.; Costa, S.K.P.; Muscará, M.N. Hydrogen sulfide and dermatological diseases. Br. J. Pharmacol. 2020, 177, 857–865. [Google Scholar] [CrossRef]
- Matz, H.; Orion, E.; Wolf, R. Balneotherapy in dermatology. Dermatol. Ther. 2003, 16, 132–140. [Google Scholar] [CrossRef]
- Kosińska, B.; Grabowski, M.L. Sulfurous balneotherapy in Poland: A vignette on history and contemporary use. Adv. Exp. Med. Biol. 2019, 1211, 51–59. [Google Scholar]
- Ward, N.P.; DeNicola, G.M. Sulfur metabolism and its contribution to malignancy. Int. Rev. Cell Mol. Biol. 2019, 347, 39–103. [Google Scholar]
- Kuciel-Lewandowska, J.M.; Pawlik-Sobecka, L.; Płaczkowska, S.; Kokot, I.; Paprocka-Borowicz, M. The assessment of the integrated antioxidant system of the body and the phenomenon of spa reaction in the course of radon therapy: A pilot study. Adv. Clin. Exp. Med. 2018, 10, 1341–1346. [Google Scholar]
- Liu, X.; Li, X.; Lan, M.; Liu, Y.; Hong, C.; Wang, H. Experimental study on permeability characteristics and radon exhalation law of overburden soil in uranium tailings pond. Environ. Sci. Pollut. Res. Int. 2021, 28, 15248–15258. [Google Scholar] [CrossRef]
- Hofmann, W.; Winkler-Heil, R.; Lettner, H.; Hubmer, A.; Gaisberger, M. Radon transfer from thermal water to human organs in radon therapy: Exhalation measurements and model simulations. Radiat. Environ. Biophys. 2019, 58, 513–529. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D. Effects of balneotherapy and spa therapy on levels of cortisol as a stress biomarker: A systematic review. Int. J. Biometeorol. 2018, 62, 913–924. [Google Scholar] [CrossRef]
- Fraioli, A.; Mennuni, G.; Fontana, M.; Nocchi, S.; Ceccarelli, F.; Perricone, C.; Serio, A. Efficacy of spa therapy, mud-pack therapy, balneotherapy, and mud-bath therapy in the management of knee osteoarthritis. A systematic review. Biomed Res. Int. 2018, 1042576. [Google Scholar] [CrossRef]
- Zdrojewicz, Z.; Bielawska-Bień, K. Radon i promieniowanie jonizujące a organizm człowieka. Postepy. Hig. Med. Dosw. 2004, 58, 150–157. [Google Scholar]
No. | Sample Location | Water Temp. in °C | pH | The Content of the Ingredient in 1 dm3 of Water | |||
---|---|---|---|---|---|---|---|
H2S mg | HCO3 mg | Rn nCi | Rn Bq | ||||
1. | Well no. II | 12.0 | 7.62 | 1.96 | 263.2 | 2.21 | 81.8 |
2. | Well no. IX | 12.0 | 7.72 | 1.70 | 289.6 | 1.71 | 63.3 |
3. | MSP tub | 16.0 | 7.65 | 1.87 | 277.9 | 2.20 | 81.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlik-Sobecka, L.; Górka-Dynysiewicz, J.; Kuciel-Lewandowska, J. Balneotherapy with the Use of Radon–Sulphide Water: The Mechanisms of Therapeutic Effect. Appl. Sci. 2021, 11, 2849. https://doi.org/10.3390/app11062849
Pawlik-Sobecka L, Górka-Dynysiewicz J, Kuciel-Lewandowska J. Balneotherapy with the Use of Radon–Sulphide Water: The Mechanisms of Therapeutic Effect. Applied Sciences. 2021; 11(6):2849. https://doi.org/10.3390/app11062849
Chicago/Turabian StylePawlik-Sobecka, Lilla, Joanna Górka-Dynysiewicz, and Jadwiga Kuciel-Lewandowska. 2021. "Balneotherapy with the Use of Radon–Sulphide Water: The Mechanisms of Therapeutic Effect" Applied Sciences 11, no. 6: 2849. https://doi.org/10.3390/app11062849
APA StylePawlik-Sobecka, L., Górka-Dynysiewicz, J., & Kuciel-Lewandowska, J. (2021). Balneotherapy with the Use of Radon–Sulphide Water: The Mechanisms of Therapeutic Effect. Applied Sciences, 11(6), 2849. https://doi.org/10.3390/app11062849