Self-Assembled Multinuclear Complexes for Cobalt(II/III) Mediated Sensitized Solar Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.3. Synthesis
2.4. Dye Sensitized Solar Cell (DSSC) Fabrication
3. Results and Discussion
3.1. Spectroscopic Properties
3.1.1. [Ru(TMAM)2CN2]TFSI4 (1)
3.1.2. Multinuclear Systems
3.2. Time Resolved Spectroscopy in Solution and on ZrO2 Thin Films
3.3. TiO2 Sensitization
3.4. Photo-Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef] [PubMed]
- Cornaro, C.; Renzi, L.; Pierro, M.; Di Carlo, A.; Guglielmotti, A. Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions. Energies 2018, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, E.; Michaels, H.; Freitag, M.; Robertson, N. Synergy of co-sensitizers in a copper bipyridyl redox system for efficient and cost-effective dye-sensitized solar cells in solar and ambient light. J. Mater. Chem. A 2020, 8, 1279–1287. [Google Scholar] [CrossRef] [Green Version]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef] [PubMed]
- Saygili, Y.; Soderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.; Munoz-Garcia, A.B.; Zakeeruddin, S.M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.; et al. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. J. Am. Chem. Soc. 2016, 138, 15087–15096. [Google Scholar] [CrossRef] [Green Version]
- Hagberg, D.P.; Jiang, X.; Gabrielsson, E.; Linder, M.; Marinado, T.; Brinck, T.; Hagfeldt, A.; Sun, L.C. Symmetric and unsymmetric donor functionalization. comparing structural and spectral benefits of chromophores for dye-sensitized solar cells. J. Mater. Chem. 2009, 19, 7232–7238. [Google Scholar] [CrossRef]
- Tsao, H.N.; Yi, C.; Moehl, T.; Yum, J.H.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Gratzel, M. Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple. ChemSusChem 2011, 4, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Carli, S.; Casarin, L.; Caramori, S.; Boaretto, R.; Busatto, E.; Argazzi, R.; Bignozzi, C.A. A viable surface passivation approach to improve efficiency in cobalt based dye sensitized solar cells. Polyhedron 2014, 82, 173–180. [Google Scholar] [CrossRef]
- Pradhan, A.; Kiran, M.S.; Kapil, G.; Hayase, S.; Pandey, S.S. Wide wavelength photon harvesting in dye-sensitized solar cells utilizing cobalt complex redox electrolyte: Implication of surface passivation. Sol. Energy Mat. Sol. C 2019, 195, 122–133. [Google Scholar] [CrossRef]
- Kinnaird, M.G.; Whitten, D.G. Luminescent bimetallic complexes. Study of the formation, redox behavior, and photochemistry of complexes between Ag+ and bis(2,2′-bipyridine)-bis-cyanoruthenium(II). Chem. Phys. Lett. 1982, 88, 275–280. [Google Scholar] [CrossRef]
- Amadelli, R.; Argazzi, R.; Bignozzi, C.A.; Scandola, F. Design of Antenna-Sensitizer Polynuclear Complexes–Sensitization of Titanium-Dioxide with [Ru(Bpy)2(Cn)2]2ru(Bpy(Coo)2)22-. J. Am. Chem. Soc. 1990, 112, 7099–7103. [Google Scholar] [CrossRef]
- Casarin, L.; Swords, W.B.; Caramori, S.; Bignozzi, C.A.; Meyer, G.J. Rapid Static Sensitizer Regeneration Enabled by Ion Pairing. Inorg. Chem. 2017, 56, 7324–7327. [Google Scholar] [CrossRef] [PubMed]
- Swords, W.B.; Li, G.; Meyer, G.J. Iodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH3CN. Inorg. Chem. 2015, 54, 4512–4519. [Google Scholar] [CrossRef]
- Li, J.-H.; Wang, J.-T.; Hu, P.; Zhang, L.-Y.; Chen, Z.-N.; Mao, Z.-W.; Ji, L.-N. Synthesis, structure and nuclease activity of copper complexes of disubstituted 2,2′-bipyridine ligands bearing ammonium groups. Polyhedron 2008, 27, 1898–1904. [Google Scholar] [CrossRef]
- Cazzanti, S.; Caramori, S.; Argazzi, R.; Elliott, C.M.; Bignozzi, C.A. Efficient non-corrosive electron-transfer mediator mixtures for dye-sensitized solar cells. J. Am. Chem. Soc. 2006, 128, 9996–9997. [Google Scholar] [CrossRef]
- Boaretto, R.; Busatto, E.; Carli, S.; Fracasso, S. Process for the Synthesis of Precursor Complexes of Titanium Dioxide Sensitization Dyes Based on Ruthenium Polypyridine Complexes. U.S. Patent Application 13/908,305, 13 February 2011. [Google Scholar]
- Di Carlo, G.; Caramori, S.; Trifiletti, V.; Giannuzzi, R.; De Marco, L.; Pizzotti, M.; Orbelli Biroli, A.; Tessore, F.; Argazzi, R.; Bignozzi, C.A. Influence of porphyrinic structure on electron transfer processes at the electrolyte/dye/TiO2 interface in PSSCs: A comparison between meso push-pull and beta-pyrrolic architectures. ACS Appl. Mater. Interfaces 2014, 6, 15841–15852. [Google Scholar] [CrossRef]
- Reddy Marri, A.; Marchini, E.; Cabanes, V.D.; Argazzi, R.; Pastore, M.; Caramori, S.; Gros, P.C. Record power conversion efficiencies for iron(ii)-NHC-sensitized DSSCs from rational molecular engineering and electrolyte optimization. J. Mater. Chem. A 2021. [Google Scholar] [CrossRef]
- Mazzanti, M.; Caramori, S.; Fogagnolo, M.; Cristino, V.; Molinari, A. Turning Waste into Useful Products by Photocatalysis with Nanocrystalline TiO2 Thin Films: Reductive Cleavage of Azo Bond in the Presence of Aqueous Formate. Nanomaterials 2020, 10, 2147. [Google Scholar] [CrossRef] [PubMed]
- Carli, S.; Busatto, E.; Caramori, S.; Boaretto, R.; Argazzi, R.; Timpson, C.J.; Bignozzi, C.A. Comparative Evaluation of Catalytic Counter Electrodes for Co(III)/(II) Electron Shuttles in Regenerative Photoelectrochemical Cells. J. Phys. Chem. C 2013, 117, 5142–5153. [Google Scholar] [CrossRef]
- Fantacci, S.; De Angelis, F. A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO. Coord. Chem. Rev. 2011, 255, 2704–2726. [Google Scholar] [CrossRef]
- Krüger, J.; Plass, R.; Grätzel, M.; Matthieu, H.-J. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy-2,2′bipyridine)-bis(isothiocyanato) ruthenium(II). Appl. Phys. Lett. 2002, 81, 367–369. [Google Scholar] [CrossRef]
- Bignozzi, C.A.; Argazzi, R.; Schoonover, J.R.; Gordon, K.C.; Dyer, R.B.; Scandola, F. Electronic Coupling in Cyano-Bridged Ruthenium Polypyridine Complexes and Role of Electronic Effects on Cyanide Stretching Frequencies. Inorg. Chem. 1992, 31, 5260–5267. [Google Scholar] [CrossRef]
- Dows, D.A.; Haim, A.; Wilmarth, W.K. Infra-red spectroscopic detection of bridging cyanide groups. J. Inorg. Nucl. Chem. 1961, 21, 33–37. [Google Scholar] [CrossRef]
- Caspar, J.V.; Meyer, T.J. Application of the energy gap law to nonradiative, excited-state decay. J. Phys. Chem. 1983, 87, 952–957. [Google Scholar] [CrossRef]
- Englman, R.; Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 1970, 18, 145–164. [Google Scholar] [CrossRef]
- Tachibana, Y.; Moser, J.E.; Gratzel, M.; Klug, D.R.; Durrant, J.R. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. 1996, 100, 20056–20062. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.D.; Morandeira, A.; Koops, S.; Mozer, A.J.; Tsekouras, G.; Dong, Y.; Wagner, P.; Wallace, G.; Earles, J.C.; Gordon, K.C.; et al. Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 3276–3279. [Google Scholar] [CrossRef]
- Koops, S.E.; O’Regan, B.C.; Barnes, P.R.; Durrant, J.R. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 4808–4818. [Google Scholar] [CrossRef] [Green Version]
- Oum, K.; Lohse, P.W.; Flender, O.; Klein, J.R.; Scholz, M.; Lenzer, T.; Du, J.; Oekermann, T. Ultrafast dynamics of the indoline dye D149 on electrodeposited ZnO and sintered ZrO2 and TiO2 thin films. Phys. Chem. Chem. Phys. 2012, 14, 15429–15437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oum, K.; Flender, O.; Lohse, P.W.; Scholz, M.; Hagfeldt, A.; Boschloo, G.; Lenzer, T. Electron and hole transfer dynamics of a triarylamine-based dye with peripheral hole acceptors on TiO2 in the absence and presence of solvent. Phys. Chem. Chem. Phys. 2014, 16, 8019–8029. [Google Scholar] [CrossRef] [PubMed]
- Tiwana, P.; Docampo, P.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 2011, 5, 5158–5166. [Google Scholar] [CrossRef] [PubMed]
- Bisquert, J.; Zaban, A.; Greenshtein, M.; Mora-Sero, I. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J. Am. Chem Soc. 2004, 126, 13550–13559. [Google Scholar] [CrossRef] [PubMed]
Absorption | Emission | E00/eV | ||||
---|---|---|---|---|---|---|
λmax/nm MLCT | ε/M−1cm−1 MLCT | λ/nm π–π * | λmax/nm | τ */ns | ||
Z907 | 540, 417 | 12,047, 12,935 | 315, 295 Sh | >850 | <10 | 1.71 |
1 (Ru(TMAM) | 490, 358 | 10,858, 9487 | 301 | 700 | 189 | 2.13 |
2 (Ru(TMAM)-Ag+) | 467, 343 | 9520, 9498 | 299 | 665 | 222 | 2.18 |
3 (2Z907-Ag+) | 514, 406 | 9011, 9384 | 314, 295 Sh | 790 | 23 | 2.03 |
4 (2Z907-Ag+-Ru(TMAM) | 503, 442 Sh, 361 | 13,570, 12,944 | 314 Sh, 300 | 744 | / | / |
J/mA/cm2 | Voc/V | FF% | η % | |
---|---|---|---|---|
Z907 | 4.8 ± 0.2 | 0.64 ± 0.08 | 62 ± 3 | 1.9 ± 0.2 |
3 (2Z907-Ag+) | 7.4 ± 0.4 | 0.75 ± 0.02 | 56 ± 4 | 3.1 ± 0.1 |
4 (2Z907-Ag+-Ru(TMAM)) | 7.3 ± 0.2 | 0.78 ± 0.01 | 55 ± 1 | 3.1 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchini, E.; Caramori, S.; Boaretto, R.; Cristino, V.; Argazzi, R.; Niorettini, A.; Bignozzi, C.A. Self-Assembled Multinuclear Complexes for Cobalt(II/III) Mediated Sensitized Solar Cells. Appl. Sci. 2021, 11, 2769. https://doi.org/10.3390/app11062769
Marchini E, Caramori S, Boaretto R, Cristino V, Argazzi R, Niorettini A, Bignozzi CA. Self-Assembled Multinuclear Complexes for Cobalt(II/III) Mediated Sensitized Solar Cells. Applied Sciences. 2021; 11(6):2769. https://doi.org/10.3390/app11062769
Chicago/Turabian StyleMarchini, Edoardo, Stefano Caramori, Rita Boaretto, Vito Cristino, Roberto Argazzi, Alessandro Niorettini, and Carlo Alberto Bignozzi. 2021. "Self-Assembled Multinuclear Complexes for Cobalt(II/III) Mediated Sensitized Solar Cells" Applied Sciences 11, no. 6: 2769. https://doi.org/10.3390/app11062769
APA StyleMarchini, E., Caramori, S., Boaretto, R., Cristino, V., Argazzi, R., Niorettini, A., & Bignozzi, C. A. (2021). Self-Assembled Multinuclear Complexes for Cobalt(II/III) Mediated Sensitized Solar Cells. Applied Sciences, 11(6), 2769. https://doi.org/10.3390/app11062769