Potential Instability and Malfunction of Knee Joints with Vastus Medialis Impairment after Total Knee Arthroplasty
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Oliver, W.M.; Arthur, C.H.; Wood, A.M.; Clayton, R.A.; Brenkel, I.J.; Walmsley, P. Excellent survival and good outcomes at 15 years using the press-fit condylar sigma total knee arthroplasty. J. Arthroplast. 2018, 33, 2524–2529. [Google Scholar] [CrossRef]
- Putman, S.; Argenson, J.-N.; Bonnevialle, P.; Ehlinger, M.; Vie, P.; Leclercq, S.; Bizot, P.; Lustig, S.; Parratte, S.; Ramdane, N.J.O.; et al. Ten-year survival and complications of total knee arthroplasty for osteoarthritis secondary to trauma or surgery: A French multicentre study of 263 patients. Orthop. Traumatol. Surg. Res. 2018, 104, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.C.; Mizner, R.L.; Foreman, K.B.; Marcus, R.L.; Pelt, C.E.; LaStayo, P.C. Quadriceps weakness preferentially predicts detrimental gait compensations among common impairments after total knee arthroplasty. J. Orthop. Res. 2018, 36, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.J. Fourth AJRR Annual Report on Hip and Knee Arthroplasty Data; American Joint Replacement Registry: Rosemont, IL, USA, 2017. [Google Scholar]
- Pitta, M.; Esposito, C.I.; Li, Z.; Lee, Y.Y.; Wright, T.M.; Padgett, D.E. Failure after modern total knee arthroplasty: A prospective study of 18,065 knees. J. Arthroplast. 2018, 33, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Mullaji, A.B.; Shetty, G.M. The Unstable Knee. In Deformity Correction in Total Knee Arthroplasty; Springer: Berlin/Heidelberg, Germany, 2014; pp. 129–138. [Google Scholar]
- Arumilli, B.R.B.; Ferns, B.; Smith, M.; Thalava, R.; Obeid, E.; Muddu, B. Non-traumatic dislocation (Cam Jump) in a revision knee: A case report. Cases J. 2009, 2, 7001. [Google Scholar] [CrossRef][Green Version]
- Cottino, U.; Sculco, P.K.; Sierra, R.J.; Abdel, M.P. Instability after total knee arthroplasty. Orthop. Clin. 2016, 47, 311–316. [Google Scholar] [CrossRef]
- Lee, H.M.; Kim, J.P.; Chung, P.H.; Kang, S.; Kim, Y.S.; Go, B.S. Posterior dislocation following revision total knee replacement arthroplasty: A case report and literature analysis. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 1641–1644. [Google Scholar] [CrossRef]
- Parween, R.; Shriram, D.; Mohan, R.E.; Lee, Y.H.D.; Subburaj, K. Method for evaluating effects of unloader knee braces on joint health: A review. Biomed. Eng. Lett. 2019, 9, 153–168. [Google Scholar] [CrossRef]
- Berman, A.T.; Bosacco, S.J.; Israelite, C. Evaluation of total knee arthroplasty using isokinetic testing. Clin. Orthop. Relat. Res. 1991, 271, 106–113. [Google Scholar] [CrossRef]
- Lorentzen, J.S.; Petersen, M.M.; Brot, C.; Madsen, O.R. Early changes in muscle strength after total knee arthroplasty: A 6-month follow-up of 30 knees. Acta Orthop. Scand. 1999, 70, 176–179. [Google Scholar] [CrossRef]
- Rodgers, J.A.; Garvin, K.L.; Walker, C.W.; Morford, D.; Urban, J.; Bedard, J. Preoperative physical therapy in primary total knee arthroplasty. J. Arthroplast. 1998, 13, 414–421. [Google Scholar] [CrossRef]
- Walsh, M.; Woodhouse, L.J.; Thomas, S.G.; Finch, E. Physical impairments and functional limitations: A comparison of individuals 1 year after total knee arthroplasty with control subjects. Phys. Ther. 1998, 78, 248–258. [Google Scholar] [CrossRef]
- Berth, A.; Urbach, D.; Awiszus, F. Improvement of voluntary quadriceps muscle activation after total knee arthroplasty. Arch. Phys. Med. Rehabil. 2002, 83, 1432–1436. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Cheng, C.K.; Lee, Y.T.; Lee, K.S. Muscle strength after successful total knee replacement: A 6-to 13-year followup. Clin. Orthop. Relat. Res. 1996, 328, 147–154. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Snyder-Mackler, L. Quadriceps strength and the time course of functional recovery after total knee arthroplasty. J. Orthop. Sports Phys. Ther. 2005, 35, 424–436. [Google Scholar] [CrossRef]
- Silva, M.; Shepherd, E.F.; Jackson, W.O.; Pratt, J.A.; McClung, C.D.; Schmalzried, T.P. Knee strength after total knee arthroplasty. J. Arthroplast. 2003, 18, 605–611. [Google Scholar] [CrossRef]
- Cavaignac, E.; Tricoire, J.; Pailhé, R.; Murgier, J.; Reina, N.; Chiron, P.; Laffosse, J.M. Recurring intraprosthetic dislocation of rotating-hinge total knee prosthesis. Effect of implant design on intrinsic stability. Orthop. Traumatol. Surg. Res. 2014, 100, 835–837. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, P.F.; Hozack, W.J.; Booth, J.R.; Balderston, R.A.; Rothman, R.H. Posterior dislocation of total knee arthroplasty. Clin. Orthop. Relat. Res. 1992, 278, 128–133. [Google Scholar] [CrossRef]
- Fitzgerald, G.K. Therapeutic exercise for knee osteoarthritis: Considering factors that may influence outcome. Eur. Med. 2005, 41, 163. [Google Scholar]
- Bolgla, L.A.; Shaffer, S.W.; Malone, T.R. Vastus medialis activation during knee extension exercises: Evidence for exercise prescription. J. Sport Rehabil. 2008, 17, 1–10. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Stevens, J.E.; Vandenborne, K.; Snyder-Mackler, L. Early quadriceps strength loss after total knee arthroplasty: The contributions of muscle atrophy and failure of voluntary muscle activation. J. Bone Jt. Surg. Am. 2005, 87, 1047. [Google Scholar] [CrossRef] [PubMed]
- Sakai, N.; Luo, Z.P.; Rand, J.A.; An, K.N. The influence of weakness in the vastus medialis oblique muscle on the patellofemoral joint: An in vitro biomechanical study. Clin. Biomech. 2000, 15, 335–339. [Google Scholar] [CrossRef]
- Powers, C.M.; Chen, Y.-J.; Scher, I.S.; Lee, T.Q. Multiplane loading of the extensor mechanism alters the patellar ligament force/quadriceps force ratio. J. Biomech. Eng. 2010, 132, 024503. [Google Scholar] [CrossRef]
- Wickiewicz, T.L.; Roy, R.R.; Powell, P.L.; Edgerton, V.R. Muscle architecture of the human lower limb. Clin. Orthop. Relat. Res. 1983, 1, 275–283. [Google Scholar] [CrossRef]
- Sakai, N.; Luo, Z.P.; Rand, J.A.; An, K.N. Quadriceps forces and patellar motion in the anatomical model of the patellofemoral joint. Knee 1996, 3, 1–7. [Google Scholar] [CrossRef]
- Withrow, T.J.; Huston, L.J.; Wojtys, E.M.; Ashton-Miller, J.A. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am. J. Sports Med. 2006, 34, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Mesfar, W.; Shirazi-Adl, A. Biomechanics of the knee joint in flexion under various quadriceps forces. Knee 2005, 12, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Flaxman, T.E.; Alkjær, T.; Simonsen, E.B.; Krogsgaard, M.R.; Benoit, D.L. Predicting the functional roles of knee joint muscles from internal joint moments. Med. Sci. Sports Exerc. 2017, 49, 527–537. [Google Scholar] [CrossRef]
- Stevens, J.E.; Mizner, R.L.; Snyder-Mackler, L. Neuromuscular electrical stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: A case series. J. Orthop. Sports Phys. Ther. 2004, 34, 21–29. [Google Scholar] [CrossRef][Green Version]
- Moffet, H.; Collet, J.-P.; Shapiro, S.H.; Paradis, G.; Marquis, F.; Roy, L. Effectiveness of intensive rehabilitation on functional ability and quality of life after first total knee arthroplasty: A single-blind randomized controlled trial. Arch. Phys. Med. Rehabil. 2004, 85, 546–556. [Google Scholar] [CrossRef]
- Avramidis, K.; Strike, P.W.; Taylor, P.N.; Swain, I.D. Effectiveness of electric stimulation of the vastus medialis muscle in the rehabilitation of patients after total knee arthroplasty. Arch. Phys. Med. Rehabil. 2003, 84, 1850–1853. [Google Scholar] [CrossRef]
- Meier, W.; Mizner, R.; Marcus, R.; Dibble, L.; Peters, C.; Lastayo, P.C. Total knee arthroplasty: Muscle impairments, functional limitations, and recommended rehabilitation approaches. J. Orthop. Sports Phys. Ther. 2008, 38, 246–256. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Kim, J. Electromyography-signal-based muscle fatigue assessment for knee rehabilitation monitoring systems. Biomed. Eng. Lett. 2018, 8, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Mesfar, W.; Shirazi-Adl, A. Knee joint mechanics under quadriceps-hamstrings muscle forces are influenced by tibial restraint. Clin. Biomech. 2006, 21, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Ahmad, C.; Gardner, T.; Grelsamer, R.; Henry, J.; Blankevoort, L.; Ateshian, G.; Mow, V.C. Hamstrings and iliotibial band forces affect knee kinematics and contact pattern. J. Orthop. Res. 2000, 18, 101–108. [Google Scholar] [CrossRef]
- Bull, A.M.; Kessler, O.; Alam, M.; Amis, A.A. Changes in knee kinematics reflect the articular geometry after arthroplasty. Clin. Orthop. Relat. Res. 2008, 466, 2491–2499. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hsich, Y.-F.; Draganich, L.F. Knee kinematics and ligament lengths during physiologic levels of isometric quadriceps loads. Knee 1997, 4, 145–154. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Bignozzi, S.; Saffarini, M.; Colle, F.; Sharma, B.; Kinov, P.S.; Marcacci, M.; Dejour, D. Comparison of stability and kinematics of the natural knee versus a PS TKA with a ‘third condyle’. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Wünschel, M.; Leasure, J.M.; Dalheimer, P.; Kraft, N.; Wülker, N.; Müller, O. Differences in knee joint kinematics and forces after posterior cruciate retaining and stabilized total knee arthroplasty. Knee 2013, 20, 416–421. [Google Scholar] [CrossRef]
- Shandiz, M.A.; Boulos, P.; Saevarsson, S.K.; Yoo, S.; Miller, S.; Anglin, C. Changes in knee kinematics following total knee arthroplasty. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2016, 230, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Krackow, K.A.; Mihalko, W.M. Flexion-extension joint gap changes after lateral structure release for valgus deformity correction in total knee arthroplasty: A cadaveric study. J. Arthroplast. 1999, 14, 994–1004. [Google Scholar] [CrossRef]
- Moynihan, A.L.; Varadarajan, K.M.; Hanson, G.R.; Park, S.-E.; Nha, K.W.; Suggs, J.F.; Johnson, T.; Li, G. In vivo knee kinematics during high flexion after a posterior-substituting total knee arthroplasty. Int. Orthop. 2010, 34, 497–503. [Google Scholar] [CrossRef] [PubMed][Green Version]
VM Impairment | Repetition Count | Total Test Count (m ∗ n) | |
---|---|---|---|
TKA not performed (m 1 = 4) | With 3 (m 1 = 4) | n 2 = 3 | 12 |
Without 4 (m 1 = 4) | n 2 = 3 | 12 | |
TKA performed (m 1 = 4) | With 3 (m 1 = 4) | n 2 = 3 | 12 |
Without 4 (m 1 = 4) | n 2 = 3 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Yang, H.-M.; Jang, J.; Kwak, D.-S.; Kim, J.; Chun, H.-J.; Jung, D.; Lim, D. Potential Instability and Malfunction of Knee Joints with Vastus Medialis Impairment after Total Knee Arthroplasty. Appl. Sci. 2021, 11, 2764. https://doi.org/10.3390/app11062764
Lee Y, Yang H-M, Jang J, Kwak D-S, Kim J, Chun H-J, Jung D, Lim D. Potential Instability and Malfunction of Knee Joints with Vastus Medialis Impairment after Total Knee Arthroplasty. Applied Sciences. 2021; 11(6):2764. https://doi.org/10.3390/app11062764
Chicago/Turabian StyleLee, Yongkyung, Hai-Mi Yang, Jinju Jang, Dai-Soon Kwak, Jungsung Kim, Heoung-Jae Chun, Dukyoung Jung, and Dohyung Lim. 2021. "Potential Instability and Malfunction of Knee Joints with Vastus Medialis Impairment after Total Knee Arthroplasty" Applied Sciences 11, no. 6: 2764. https://doi.org/10.3390/app11062764
APA StyleLee, Y., Yang, H.-M., Jang, J., Kwak, D.-S., Kim, J., Chun, H.-J., Jung, D., & Lim, D. (2021). Potential Instability and Malfunction of Knee Joints with Vastus Medialis Impairment after Total Knee Arthroplasty. Applied Sciences, 11(6), 2764. https://doi.org/10.3390/app11062764