Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Standard Solutions
2.4. HS-SPME Multivariate Optimization Process
2.5. Gas Chromatography Quadrupole Mass Spectrometry (GC-qMS) Conditions
2.6. Method Validation
3. Results and Discussion
3.1. Optimization of HS-SPME Procedure
3.2. Method Validation
3.3. Quantification of Phthalates in Plastic-Based Food Packaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bošnir, J.; Puntarić, D.; Galić, A.; Škes, I.; Dijanić, T.; Klarić, M.; Grgić, M.; Čurković, M.; Šmit, Z. Migration of Phthalates from Plastic Containers into Soft Drinks and Mineral Water. Food Technol. Biotechnol. 2007, 45, 91–95. [Google Scholar]
- Wang, Y.; Zhu, H.; Kannan, K. A review of biomonitoring of phthalate exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fierens, T.; Vanermen, G.; Van Holderbeke, M.; De Henauw, S.; Sioen, I. Effect of cooking at home on the levels of eight phthalates in foods. Food Chem. Toxicol. 2012, 50, 4428–4435. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Nie, X.P.; Wang, H.S.; Wong, M.H. Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption. Environ. Int. 2013, 57–58, 75–80. [Google Scholar] [CrossRef]
- Kickham, P.; Otton, S.V.; Moore, M.M.; Ikonomou, M.G.; Gobas, F.A.P.C. Relationship between biodegradation and sorption of phthalate esters and their metabolites in natural sediments. Environ. Toxicol. Chem. 2012, 31, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- GIbarra, V.G.; De Quirós, A.R.B.; Losada, P.P.; Sendón, R. Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packag. Shelf Life 2019, 21, 100325. [Google Scholar] [CrossRef]
- Meeker, J.D.; Ferguson, K.K. Relationship between urinary phthalate and bisphenol a concentrations and serum thyroid measures in u.s. adults and adolescents from the national health and nutrition examination survey (NHANES) 2007–2008. Environ. Health Perspect. 2011, 119, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhou, L.; Zhu, J.; Liu, T.; Ye, L. Role of the 17β-hydroxysteroid dehydrogenase signalling pathway in di-(2-ethylhexyl) phthalate-induced ovarian dysfunction: An in vivo study. Sci. Total Environ. 2020, 712, 134406. [Google Scholar] [CrossRef]
- Van’T Erve, T.J.; Rosen, E.M.; Barrett, E.S.; Nguyen, R.H.N.; Sathyanarayana, S.; Milne, G.L.; Calafat, A.M.; Swan, S.H.; Ferguson, K.K. Phthalates and Phthalate Alternatives Have Diverse Associations with Oxidative Stress and Inflammation in Pregnant Women. Environ. Sci. Technol. 2019, 53, 3258–3267. [Google Scholar] [CrossRef]
- Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R.C.; Faisal, P.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater. 2017, 340, 360–383. [Google Scholar] [CrossRef]
- Hyland, C.; Mora, A.M.; Kogut, K.; Calafat, A.M.; Harley, K.; Deardorff, J.; Holland, N.; Eskenazi, B.; Sagiv, S.K. Prenatal Exposure to Phthalates and Neurodevelopment in the CHAMACOS Cohort. Environ. Health Perspect. 2019, 127, 107010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celeiro, M.; Lamas, J.P.; Vila, M.; Garcia-Jares, C.; Homem, V.; Ratola, N.; Dagnac, T.; Llompart, M. Determination of multiclass personal care products in continental waters by solid-phase microextraction followed by gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2019, 1607, 460398. [Google Scholar] [CrossRef]
- Tran-Lam, T.-T.; Dao, Y.; Nguyen, D.; Ma, H.; Pham, T.; Le, G. Optimization of Sample Preparation for Detection of 10 Phthalates in Non-Alcoholic Beverages in Northern Vietnam. Toxics 2018, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Fernández-González, V.; Moscoso-Pérez, C.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Reliable, rapid and simple method for the analysis of phthalates in sediments by ultrasonic solvent extraction followed by head space-solid phase microextraction gas chromatography mass spectrometry determination. Talanta 2017, 162, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Viñas, P.; Campillo, N.; Pastor-Belda, M.; Oller, A.; Hernández-Córdoba, M. Determination of phthalate esters in cleaning and personal care products by dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2015, 1376, 18–25. [Google Scholar] [CrossRef]
- Amanzadeh, H.; Yamini, Y.; Moradi, M.; Asl, Y.A. Determination of phthalate esters in drinking water and edible vegetable oil samples by headspace solid phase microextraction using graphene/polyvinylchloride nanocomposite coated fiber coupled to gas chromatography-flame ionization detector. J. Chromatogr. A 2016, 1465, 38–46. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Antonaccia, A.; Patrolecco, L.; Lambreva, M.D.; Litescuc, S.C.; Ghugea, S.A.; Rea, G. Analytical tools monitoring endocrine disrupting chemicals. TrAC Trends Anal. Chem. 2016, 80, 555–567. [Google Scholar] [CrossRef]
- Net, S.; Delmont, A.; Sempéré, R.; Paluselli, A.; Ouddane, B. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review. Sci. Total Environ. 2015, 515–516, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-J.; Liu, S.-Z.; Li, H.-H.; He, J.; Feng, J.-T.; Zhang, X.; Yan, H. Effects of Portulaca oleracea L. extract on lipid oxidation and color of pork meat during refrigerated storage. Meat Sci. 2019, 147, 82–90. [Google Scholar] [CrossRef]
- Carnol, L.; Schummer, C.; Moris, G. Quantification of six phthalates and one adipate in Luxembourgish beer using HS-SPME-GC/MS. Food Anal. Methods 2017, 10, 298–309. [Google Scholar] [CrossRef]
- Zhang, N.; Lei, X.; Huang, T.; Su, L.; Zhang, L.; Xie, Z.; Wu, X. Guanidyl-functionalized polyhedral oligomeric silsesquioxane porous hybrid polymer coating for specific solid phase microextraction of phthalate esters in foodstuff. Chem. Eng. J. 2020, 386, 124003. [Google Scholar] [CrossRef]
- Sánchez-Avila, J.I.; Kretzschmar, T. Simultaneous Determination of Polycyclic Aromatic Hydrocarbons, Alkylphenols, Phthalate Esters and Polychlorinated Biphenyls in Environmental Waters Based on Headspace-Solid Phase Microextraction Followed by Gas Chromatography-Tandem Mass Spectrometry. J. Environ. Anal. Chem. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Wang, W.; Leung, A.O.W.; Chu, L.H.; Wong, M.H. Phthalates contamination in China: Status, trends and human exposure-with an emphasis on oral intake. Environ. Pollut. 2018, 238, 771–782. [Google Scholar] [CrossRef]
- Moreira, M.; André, L.; Cardeal, Z. Analysis of Phthalate Migration to Food Simulants in Plastic Containers during Microwave Operations. Int. J. Environ. Res. Public Health 2013, 11, 507–526. [Google Scholar] [CrossRef]
- Razavi, N.; Yazdi, A.S. New application of chitosan-grafted polyaniline in dispersive solid-phase extraction for the separation and determination of phthalate esters in milk using high-performance liquid chromatography. J. Sep. Sci. 2017, 40, 1739–1746. [Google Scholar] [CrossRef]
- Zaater, M.F.; Tahboub, Y.R.; Al Sayyed, A.N. Determination of phthalates in Jordanian bottled water using GC-MS and HPLC-UV: Environmental study. J. Chromatogr. Sci. 2014, 52, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.H.; Yue, Q.; Huang, Y.Y.; Yang, C.; Shen, X.F. Facile magnetization of covalent organic framework for solid-phase extraction of 15 phthalate esters in beverage samples. Talanta 2020, 206, 120194–120204. [Google Scholar] [CrossRef]
- Yue, Q.; Huang, Y.Y.; Shen, X.F.; Yang, C.; Pang, Y.H. In situ growth of covalent organic framework on titanium fiber for headspace solid-phase microextraction of 11 phthalate esters in vegetables. Food Chem. 2020, 318, 126507. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, R.; Kardani, F.; Ramezani, Z. Fabrication of UMCM-1 based monolithic and hollow fiber—Metal-organic framework deep eutectic solvents/molecularly imprinted polymers and their use in solid phase microextraction of phthalate esters in yogurt, water and edible oil by GC-FID. Food Chem. 2020, 314, 126179. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, S.D.; Küplülü, Ö. Determination of phthalates in some milk products by liquid chromatography/tandem mass spectrometry. Ank. Univ. Vet. Fak. Derg. 2019, 66, 231–236. [Google Scholar] [CrossRef]
- Tsai, M.-Y.; Ho, C.-H.; Chang, H.-Y.; Yang, W.-C.; Lin, C.-F.; Lin, C.-T.; Xue, Y.-J.; Lai, J.-M.; Wang, J.-H.; Chang, G.-R. Analysis of Pollution of Phthalates in Pork and Chicken in Taiwan Using Liquid Chromatography–Tandem Mass Spectrometry and Assessment of Health Risk. Molecules 2019, 24, 3817. [Google Scholar] [CrossRef] [Green Version]
- Santana-Mayor, Á.; Socas-Rodríguez, B.; Rodríguez-Ramos, R.; Rodríguez-Delgado, M.Á. A green and simple procedure based on deep eutectic solvents for the extraction of phthalates from beverages. Food Chem. 2020, 312, 125798. [Google Scholar] [CrossRef]
- Notardonato, I.; Protano, C.; Vitali, M.; Bhattacharya, B.; Avino, P. A Method Validation for Simultaneous Determination of Phthalates and Bisphenol A Released from Plastic Water Containers. Appl. Sci. 2019, 9, 2945. [Google Scholar] [CrossRef] [Green Version]
- Nlu, Y.; Gao, W.; Li, H.; Zhang, J.; Llan, Y. Rapid determination of 17 phthalate esters in capsanthin by QuEChERS coupled with gas chromatography-mass spectrometry. Anal. Sci. 2020, 36, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.C.; Ren, R.; Jin, Q.; He, H.L.; Wang, S.T. Detection of 20 phthalate esters in breast milk by GC-MS/MS using QuEChERS extraction method. Food Addit. Contam. Part A Chem. Anal. Controlexposure Risk Assess. 2019, 36, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, Q.; Yuan, Y.; Wang, H.; Tong, Y.; Zhan, Y.; Sheng, X.; Sun, Y.; Zhou, X. Enrichment and sensitive determination of phthalate esters in environmental water samples: A novel approach of MSPE-HPLC based on PAMAM dendrimers-functionalized magnetic-nanoparticles. Talanta 2020, 206, 120213. [Google Scholar] [CrossRef]
- Zaytseva, N.V.; Ulanova, T.S.; Karnazhitskaya, T.D.; Zorina, A.S.; Permyakova, T.S. Determination of phthalates in juice product by high-performance liquid chromatography/mass spectrometry. Vopr. Pitan. 2018, 87, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Beltrán, D.; Hinojosa-Reyes, L.; Ruiz-Ruiz, E.; Hernández-Ramírez, A.; Guzmán-Mar, J.L. Phthalates in Beverages and Plastic Bottles: Sample Preparation and Determination. Food Anal. Methods 2018, 11, 48–61. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, Y.; Wu, H.; Diao, Q.; Tian, F.; Li, Y. Simultaneous determination of trace migration of phthalate esters in honey and royal jelly by GC-MS. J. Sep. Sci. 2014, 37, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, B.; Sabel, C.E.; Thomsen, M.; Gao, X.; Zhong, M.; Chen, Z.; Feng, P. Oral intake exposure to phthalates in vegetables produced in plastic greenhouses and its health burden in Shaanxi province, China. Sci. Total Environ. 2019, 696, 133921. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Kim, Y.Y.; Cho, H.D.; Kim, J.; Lee, J.Y.; Lee, Y.; Jo, E.; Lee, J.; Cha, S.; Han, S.B. Development and investigation of a QuEChERS-based method for determination of phthalate metabolites in human milk. J. Pharm. Biomed. Anal. 2020, 181, 113092. [Google Scholar] [CrossRef] [PubMed]
- Schecter, A.; Lorber, M.; Guo, Y.; Wu, Q.; Yun, S.H.; Kannan, K.; Hommel, M.; Imran, N.; Hynan, L.S.; Cheng, D.; et al. Phthalate Concentrations and Dietary Exposure from Food Purchased in New York State. Environ. Health Perspect. 2013, 121, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Ma, L.; Qiao, Y.; Lu, Y.; Xiao, D. Determination of phthalate esters in teas and tea infusions by gas chromatography-mass spectrometry. Food Chem. 2016, 197, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Del Carlo, M.; Pepe, A.; Sacchetti, G.; Compagnone, D.; Mastrocola, D.; Cichelli, A. Determination of phthalate esters in wine using solid-phase extraction and gas chromatography-mass spectrometry. Food Chem. 2008, 111, 771–777. [Google Scholar] [CrossRef]
- Abtahi, M.; Dobaradaran, S.; Torabbeigi, M.; Jorfi, S.; Gholamnia, R.; Koolivand, A.; Darabi, H.; Kavousi, A.; Saeedi, R. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in Tehran, Iran. Environ. Res. 2019, 173, 469–479. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, Z.H.; Yin, H.; Dang, Z.; Wu, P.X.; Zhu, N.W.; Lin, Z.; Liu, Y. Migration and potential risk of trace phthalates in bottled water: A global situation. Water Res. 2018, 147, 362–372. [Google Scholar] [CrossRef]
- Overgaard, L.E.K.; Bonefeld, C.M.; Frederiksen, H.; Main, K.M.; Thyssen, J.P. The association between phthalate exposure and atopic dermatitis with a discussion of phthalate induced secretion of interleukin-1β and thymic stromal lymphopoietin. Expert Rev. Clin. Immunol. 2016, 12, 609–616. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.I.; Lee, C.W. Development and validation of a modified QuEChERS method coupled with LC-MS/MS to determine arbutin in pear peels. Food Sci. Biotechnol. 2016, 25, 987–992. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Liu, L.; Li, Y.; Ren, N.; Kannan, K. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. J. Agric. Food Chem. 2012, 60, 6913–6919. [Google Scholar] [CrossRef] [PubMed]
RT (min) | PAEs | Linear Range (µg/L) | Equation | R2 | LOD (µg/L) | LOQ (µg/L) |
---|---|---|---|---|---|---|
13.18 | DIBP | 0.5–60 | y = 817,649x + 106 | 0.996 | 0.06 | 0.21 |
22.55 | BBP | 0.5–60 | y = 66,577x + 116,115 | 0.999 | 0.03 | 0.10 |
26.49 | BDE | 1–60 | y = 124,317x + 755,468 | 0.995 | 0.08 | 0.24 |
27.77 | DOP | 1–60 | y = 44,993x – 100,807 | 0.999 | 0.07 | 0.23 |
RT (min) | Compounds | Spiked Level (µg/L) | % REC ± SD | Intra-Day (%) | Inter-Day (%) |
---|---|---|---|---|---|
13.17 | DIBP | 0.5 | 90.20 ± 1.3 | 3.5 | 7.5 |
30 | 91.60 ± 0.9 | 1.9 | 5.8 | ||
60 | 104.9 ± 1.8 | 0.9 | 3.3 | ||
22.55 | BBP | 0.5 | 107.9 ± 2.0 | 5.9 | 8.5 |
30 | 111.3 ± 1.9 | 1.3 | 6.7 | ||
60 | 105.7 ± 3.2 | 0.9 | 1.7 | ||
26.49 | BDE | 1 | 98.30 ± 0.8 | 7.9 | 12.7 |
30 | 91.30 ± 1.4 | 3.7 | 10.6 | ||
60 | 94.00 ± 1.7 | 0.6 | 3.5 | ||
27.77 | DOP | 1 | 109.2 ± 4.3 | 1.5 | 8.2 |
30 | 99.20 ± 1.6 | 1.4 | 3.1 | ||
60 | 95.50 ± 0.8 | 0.7 | 2.2 |
Target Analytes | Samples | Extraction Procedure | Analytical Method | LOD (µg/L) | LOQ (µg/L) | Rec (%) | Ref. |
---|---|---|---|---|---|---|---|
6 PAEs | Milk products | LLE | LC-MS/MS | - | 20–30 µg/kg | 84–96 | [30] |
5 PAEs | Meats | LLE | LC-MS/MS | - | 40 µg/kg | 96–103 | [31] |
8 PAEs | Tea, juices | DES-VA-EDLLME | HPLC-DAD | 5.1–17.8 | 17.2–59.4 | 84–120 | [32] |
6 PAEs, BPA | Waters | SB-DLLME | GC-MS | 0.001–0.008 | 0.005–0.014 | 95–99 | [33] |
17 PAEs | Capsanthin | QuEChERS | GC-MS | 0.2–0.5 µg/kg | 0.6–1.5 µg/kg | 83–118 | [34] |
20 PAEs | Breast milk | QuEChERS | GC-MS/MS | 0.004–1.3 µg/kg | 0.02–4.2 µg/kg | 83–123 | [35] |
3 PAEs | Waters | MSPE | HPLC-VWD | 0.025–0.16 | 0.082–0.54 | 93–102 | [36] |
15 PAEs | Beverages | MSPE | GC-MS/MS | 0.005–2.748 | 0.018–9.151 | 79–122 | [27] |
6 PAEs, BPA | Honey | UVA-DLLME | GC-MS | 3–13 µg/kg | 7–22 µg/kg | 71–100 | [20] |
6 PAEs, 1 Adipate | Beers | HS-SPME | GC-MS | 0.006–0.590 | 0.020–1.959 | 74–101 | [28] |
11 PAEs | Vegetables | HS-SPME | GC-MS/MS | 0.001–0.430 | - | - | [21] |
10 PAEs | Milk and rice | SPME | GC-MS | 0.054–2.51 ng/L | 0.18–8.37 ng/L | 89–114 | [24] |
4 PAEs | Yogurts, waters | HFLMP-SPME | GC-FID | 0.008–0.030 | 0.028–0.120 | 96–100 | [29] |
4 PAEs | Food packaging | HS-SPME | GC-MS | 0.03–0.08 | 0.10–0.24 | 90–111 | This study |
Samples | Phthalates Concentration (µg/L) ± SD | |||
---|---|---|---|---|
DIBP | BBP | BDE | DOP | |
Plastic 1 | <LOD | - | - | - |
Plastic 2 | <LOD | - | - | - |
Plastic 3 | <LOD | - | - | - |
Plastic 4 | <LOD | 1.4 ± 0.01 | <LOD | 2.8 ± 0.04 |
Plastic 5 | 4.8 ± 0.3 | - | - | 1.0 ± 0.01 |
Plastic 6 | 10.6 ± 0.2 | - | - | 2.2 ± 0.06 |
Plastic 7 | 9.0 ± 0.4 | - | - | 1.8 ± 0.07 |
Plastic 8 | 6.1 ± 0.3 | - | - | 1.1 ± 0.08 |
Plastic 9 | 8.2 ± 0.4 | - | - | - |
Plastic 10 | 4.7 ± 0.05 | - | - | 2.2 ± 0.02 |
Plastic 11 | 3.6 ± 0.7 | - | - | 1.9 ± 0.2 |
Plastic 12 | 10.7 ± 0.6 | - | - | - |
Plastic 13 | 6.8 ± 0.8 | - | - | 1.9 ± 0.4 |
Plastic 14 | 4.3 ± 0.2 | - | <LOD | 2.5 ± 0.2 |
Samples | Phthalates | Concentration Range | Ref. |
---|---|---|---|
Meats | DEHP (Pork and Chicken) | 0.62, 0.8 mg/kg | [31] |
DEHP (Fruit jam, Salted meat); DnBP | 170 μg/kg, 2380 μg/kg; 1580 μg/kg | [42] | |
Spices | DEHP; DiBP, DBP; BBzP | 2598 μg/kg; >300 μg/kg | [3,49] |
Tea | DMP, DEP, DIBP; DBP; DEHP | 1.135–3.734 mg/kg | [43] |
Wine | DMP, DEP/DBP/BBP | 0.024–0.029 μg/mL | [44] |
Waters | DEHP, DBP, DEP, BOP DEHP, BBP, DBP, DEP, DMP (Bottled water) | 0.76/0.96/1.06/0.77 μg/L 3.42/2.89/13.99/5.35/1.15/2.07 μg/L | [46] |
Capsanthin | DBP, DEHP | 0.872/0.992 μg/g | [34] |
Beers | DMP, DEP, DBP, BBP, DEHP, DOP, DEHA | 0.588, 0.175, 0.118, 0.079, 0.009, 0.006, 0.009 μg/L | [20] |
Juice | DOP, DBP, DIBP, DEHP, BBP (Juice) | 0.01–08 mg/dm3 | [37] |
Beverages | DEHP, DEP | 0.580 /0.070 μg/L | [38] |
Honey/Royal Jelly | DIBP, BBP, BDE, DOP, | 0.3/1.5; 0.8/3; 0.3/1.5; 1.2; 6 ng/g | [39] |
Vegetables | DEHP, DnBP, DiBP, DEP, BBP | 1881–4664/985/338/9/2 μg/kg | [40] |
Powdered and Human/Raw Milk | Mono-BP, mono-BzP, DnBP, BzBP, DEHP | 0.1–500 ng/mL 18/1.2/21 μg/kg | [3,41] |
Yoghurt | DEHP, DBP, BBP | 170/112/63 μg/kg | [30] |
Plastic Containers | DIBP, BBP, BDE, DOP | 4.39/1.42/<LOD/1.03 µg/L | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perestrelo, R.; Silva, C.L.; Algarra, M.; Câmara, J.S. Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. Appl. Sci. 2021, 11, 2130. https://doi.org/10.3390/app11052130
Perestrelo R, Silva CL, Algarra M, Câmara JS. Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. Applied Sciences. 2021; 11(5):2130. https://doi.org/10.3390/app11052130
Chicago/Turabian StylePerestrelo, Rosa, Catarina L. Silva, Manuel Algarra, and José S. Câmara. 2021. "Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging" Applied Sciences 11, no. 5: 2130. https://doi.org/10.3390/app11052130
APA StylePerestrelo, R., Silva, C. L., Algarra, M., & Câmara, J. S. (2021). Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. Applied Sciences, 11(5), 2130. https://doi.org/10.3390/app11052130