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Featured Application: If plastic bottles are left in the heat for a long time, they can be harmful
to human health. One has probably seen pallets of water bottles in front of large supermarkets
waiting for someone to take them away from the sun and heat. The main problem derives from
the fact that the commonly defined plastic bottles, once in contact with heat sources, release
both phthalates and bisphenol A. This means that great care must be taken not to expose water
bottles to food, neither during transport, nor in supermarket stores in any way. For this reason,
the authors propose an easy, robust, and rapid method to determine such compounds with high
precision and accuracy.

Abstract: Phthalates (or phthalate esters, PAEs) and bisphenol A (BPA) are widely used in various
industries, particularly in the fields of cosmetics and packaging, and they increase the malleability
and workability of materials. As a result of their use, some international health organizations have
begun to study them. In this study, the authors developed a methodology for the simultaneous
determination of dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP);
dibutyl phthalate (DBP), bis(2-ethylhexyl) phthalate (DEHP); di-n-octyl-phthalate (DnOP) and
bisphenol A (BPA) from drinking and non-potable waters. The extraction of PAEs and BPA was
performed using a solvent-based dispersive liquid-liquid microextraction (SB-DLLME) method.
The analytical determination was performed using a gas chromatography—ion trap mass spectrometry
(GC-IT/MS) analysis. The entire procedure was validated as recoveries were studied according
to the volume and the extraction solvent used, pH, and ionic strength. Dynamic linearity ranges
and linear equations of all the compounds were experimentally determined as well as the limit of
detection (LOD) (1-8 ng mL™!) and the limit of quantification (LOQ) (5-14 ng mL™1), reproducibility,
and sensitivity. The method was applied to 15 water samples (mineral water and tap water) for
determining PAEs and BPA released from the plastic container. After the release simulation, four PAEs
(i.e., DiBP, DBP, DHEP, and DnOP) were determined at very low concentrations (below 1.2 ng mL™1)
in two water samples from (sport) bottles.
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1. Introduction

Currently, plastics are one of the most practical and economical ways to contain food, healthcare
products, cosmetics, or other products [1-3]. The development and wide use of plastic materials as
containers has led the packaging industry to significantly change the chemical composition of plastics
in recent years. In fact, chemical additives are added to their composition to increase their malleability,
brilliance, and workability. Among these additives, the most commonly used are phthalates and
bisphenol A (BPA) [4-6].

Phthalates (or phthalate esters, PAEs) are compounds synthesized by double esterification of
1,2 benzendicarboxylic acid (phthalic acid) with linear or branched alcohols, starting from methanol
or ethanol (C;-C;), up to isotridecanol (Cy3). Depending on the molecular weight, they can be used
in various industrial applications. Low molecular weight phthalates, such as diethyl phthalate (DEP)
and dibutyl phthalate (DBP), have been used since 1930 in personal care and hygiene products (in the
preparation of perfumes, shampoos, soaps, lotions, cosmetics, and softeners, or added as plasticizers
of cellulose acetate), in the process industry (e.g., production of lacquers, paints, lubricating oils,
adhesives, inks, insecticides, coatings), and also in the pharmaceutical industry (in some drugs, it is
used to regulate the release speed) [7]. On the other hand, high molecular weight phthalates, such as
bis(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), and di-n-octyl phthalate (DnOP) are
mainly used as plasticizers in the production of vinyl, which is often used in products such as flooring
and wall covering, toys, food packing, and medical devices [8]. The plasticizing phthalates, which
also include diisodecyl phthalate (DIDP), dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl
phthalate (DBP), and benzylbutyl phthalate (BBP), are used as intermolecular lubricants conferring
hardness, flexibility, malleability, and elasticity [9]. The chemical and physical properties vary with
the structure, that is, with the length of the chain and the branches. They are generally colorless and
odorless and lipophilic, and show a high boiling point and a low vapor pressure, both parameters
influencing their high stability and presence in the environment. Fundamentally, up to 8 million tons
of phthalate products are produced each year worldwide, of which over 2 million are just DEHP [10].
In Western Europe, about one million tons of phthalates are produced annually, of which 900,000 are
used in the production process of polyvinyl chloride (PVC) to increase its plastic properties.

PAEs are molecules that are not covalently linked to the matrix and show a tendency to migrate,
especially in the presence of lipophilic compounds and/or in the event of mechanical or thermal
stress [11]. For example, a generic product containing PVC (it may include more than 40% of
DEHP) or other products containing such molecules produces a typical release of PAEs into the
environment [12,13]. Therefore, PAEs represent ubiquitous contaminants and decompose with both
exposure to sunlight and aerobic microbial activity; they tend to adsorb soil particles, sediments,
and humus where they are protected from sunlight. From the environmental point of view, PAEs have
a duration (and therefore a permanence) of several hours in the atmosphere and of months in the
soil, whereas they can persist for years in sediments [14]. They can bioaccumulate in invertebrates,
fish, and plants, whereas in complex animals they are efficiently metabolized and excreted. This last
consideration is very important because the possible presence of PAEs in tissues [15] indicates a very
recent exposure/contamination.

PAEs play an extremely dangerous role for human health because they can accumulate in the
human body and cause chronic intoxication causing serious damage to the liver and/or reproductive
system [16]. In fact, they are considered endocrine disruptors [17]. Humans are widely exposed to
PAEs [18]. Exposure may derive from four major routes, namely, ingestion (mainly with respect to
PAE plasticizing; sources can be food contamination during the preparation or packaging process,
drugs and nutritional preparations, baby toys), inhalation (mainly DEP and DEHP, although they show
low volatility; they can originate from medical devices, e.g., bags or pipes, or be present in indoor
dust, e.g., furniture, clothes, building materials, plastic components), intravenous (from medical PVC
devices transporting intravenous fluids, nutritional formulas, blood; DEHP migration varies according
to some parameters such as lipid content, temperature, and duration time), and dermal (mainly DEP;
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contamination through clothes, footwear, gloves, cosmetics, sunscreen, insecticides, hygiene products,
paints, toys) [19-24]. Phthalates have a low acute toxicity, with an LDsy between 1 and 30 g of body
weight [25,26]. It should be noted that the exposure risk decreases with individual age [22]. PAEs
do not show mutagenic and/or genotoxic activity [27], although a recent study shows potentially
surprising mutagenic activity by DEHP [28], whereas the carcinogenic aspect is more complex [29].
DEP activity is questionable, there are no carcinogenicity data available for DiNP, DBP appears to be
associated with tumor promotion activity, and DEHP exposure produces hepatocellular carcinoma
in rodents along with a variety of other hepatocellular effects [30]. In addition, the European Food
Safety Authority (EFSA) has established the maximum daily limit of human intake for some PAEs (DBP
0.01, BBP 0.5, DEHP 0.05, DNP 0.15, DDP 0.15 mg kg ™! per day per body weight) [31]. The International
Agency for Research on Cancer (IARC) has recently evaluated DEHP and modified its classification
from “possibly carcinogenic to humans (Group 2B)” to “not classifiable as to its carcinogenicity to
humans (Group 3)”. The PAE residues in food and beverages are internationally regulated; in many
countries, phthalates are banned as food substances.

On the other hand, BPA, belonging to the group of diphenylmethane and bisphenol derivatives,
is a pseudo-persistent chemical and, despite its short duration, is omnipresent in the environment
due to its release [32]. The presence of hydroxyl groups results in good reactivity. Similar to other
phenols, BPA can be converted into ethers, esters, and salts, showing good solubility in fats but less
in water. The presence of BPA in the natural environment is linked exclusively to activities of anthropic
origin; it is a starting material for the synthesis of plastics [33]. The release can take place during the
production, transport, or processing phases. BPA has acute toxicity towards vertebrates. The LDs
values in rats are 3250 mg kg~! body weight for oral intake, 841 mg kg~! intraperitoneal. and 35.26 mg
kg_1 intravenously [34]. Since 1988, the U.S. Environmental Protection Agency (US EPA) has estimated
a reference dose for oral ingestion of 50 pg kg™ body weight [35], whereas the European Food Safety
Authority (EFSA) recently set the tolerable daily intake (TDI) at 4 ug kg~! body weight (i.e., twelve and
a half times lower than the previous level) [18] and a new revision is planned for 2020. In recent years.
the study on BPA'’s toxic, teratogenic, carcinogenic, and estrogenic effects has considerably intensified,
also considering its widespread use. BPA is a xenoestrogen, a compound that disturbs the functions of
the endocrine system [36-39]. A recent study by Acevedo et al. (2013) [40] suggested that BPA taken
from mice in does comparable to those taken by humans behaves like a carcinogen for the mammary
gland. Finally, numerous investigations have shown that BPA, by exerting an action on the endocrine
system, can contribute to the development of obesity [41,42].

For these reasons, several studies have been set up to determine the PAE/BPA presence in food
packaging and/or in food and beverages following the migration process [43—46]. Although the
analytical determination is well studied, it is still difficult [47]. In the literature, there are few articles
on these topics in such matrices and they are based on stir bar sorptive extraction (SBSE) or solid phase
extraction (SPE) [48-54].

For many years, our research group has been involved in the development of analytical methods for
micropollutant determination in different food matrices [55-63]. In this paper, the authors investigated
the possibility of simultaneous PAE and BPA determination in water samples after their release from
plastic water containers.

2. Materials and Methods

2.1. Materials and Chemicals

Standards of PAEs investigated in this study, such as dimethyl phthalate (DMP; C19H;9O4; MW
194; first and second fragment my/z ratio 163), diethyl phthalate (DEP; C1,H1404; MW 222; m/z 149
and 177), diisobutyl phthalate (DiBP; C15H,O4; MW 278; m/z 149 and 205); dibutyl phthalate (DBP;
C16H2O4; MW 278; m/z 149 and 205), bis(2-ethylhexyl) phthalate (DEHP; Cy4H3304; MW 390; m/z 149
and 261); di-n-octyl-phthalate (DnOP); Cp4H3404; MW 391; /2 149 and 261), and bisphenol A (BPA;
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C15H1602; MW 228; my/z 213 and 228), were obtained from Sigma-Aldrich (Milan, Italy). A mixture
containing all the standards was prepared at an initial concentration of 200 tg mL~! and subsequently
diluted up to 50 ng mL~!. The solutions were stored in 2 mL amber vials at =20 °C. n-Hexane,
n-heptane, iso-octane, and benzene were of pesticide grade (Carlo Erba, Milan, Italy), whereas sodium
chloride (Carlo Erba) was of analytical reagent grade. Finally, 5 uL of anthracene (1 mg mL™1) (C14H1;
MW 178; LabService Analytica, Anzola Emilia, Bologna, Italy) were added as the internal standard
(LS.) to each sample before being processed.

Regarding cross-contamination due to reagents (especially to minimize background contamination
due to NaCl), materials, and laboratory equipment (e.g., glassware, tubing), which is still a fundamental
problem in PAE analysis, all chemicals and instruments were subjected to severe cleaning procedures.
Previous papers [58,60] report all the details. In summary, the glassware was soaked and washed
in acetone, dried at 140 °C for at least 4 h; NaCl was heated for 4 h at 140 °C and, after cooling, kept
in a tightly sealed glass vial. For the PAE standard solutions (0.1 mg mL~! of each PAE), absolute
ethanol was used; each solution was further diluted by ethanol to obtain solutions at different PAE
concentrations for spiking the samples.

2.2. Extraction Process Using Dispersive Liquid—Liquid Microextraction (DLLME) Methodology

The study of this analytical approach (i.e., the DLLME procedure) can be divided into several
phases. The choice of the best extraction solvent among different solvents, such as n-hexane (density
0.66 g cm™2), n-heptane (0.68 g cm™?), iso-octane (0.69 g cm™?), and benzene (0.88 g cm™2), is the first
step. All the solvents tested had a lower density than water. Several volumes of each solvent were
tested to evaluate the best extraction solvent. Taking into account the absence of the dispersive solvent
(e.g., acetone), it was necessary to use other methods to achieve efficient emulsification. Among the
different possibilities, ultrasounds were tested; 6 min in the ultrasonic bath (100 W power) allowed us to
reach a stable and homogeneous emulsion. Second, NaCl addition was necessary to break the emulsion;
different NaCl concentrations were compared in terms of percentage recoveries. Using this approach,
1 L of water sample (pH 5) with the addition of 100 pL of PAE/BPA mixture solution (50 pg uL~1 of
each analyte) and 50 uL of LS. (1 pg pL.~!) was treated with 200 uL of n-hexane identified as the best
extraction solvent. Subsequently, the sample was subjected to 5 min stirring and ultrasounds for 6 min
and NaCl 15 g L~! was added. The solution was vortexed for 10 min to break the emulsion, then 1 pL
withdrawn by syringe was injected into the GC-MS instrument. All experimental conditions were
applied to study the analytical parameters of the PAE and BPA extraction.

2.3. GC-MS Analysis

A TraceGC gas chromatograph (GC) coupled with a mass spectrometry ion trap (IT/MS) PolarisQ
(Thermo Fischer, Milan, Italy) was used for the analysis, whereas the data acquisition and process
were performed using specific software (Xcalibur, version 1.4.1, ThermoFischer,).Reange A model
TRB-Meta X5 (30 m X 0.25 mm X 0.25 um) fused-silica capillary column (SE-54, 5% phenyl —95%
dimethylpolisiloxane) from Teknokroma (Rome, Italy) was used. Helium 5.5 was used as carrier
gas at a flow rate of 1.0 mL min~!. A programmable temperature vaporization (PTV) injector in the
splitless mode was used; 10 seconds after the injection, the vaporizer was heated from 110 to 280 °C
at 14.5 °C min~! and the splitter valve was opened after 120 s. The oven temperature program was
as follows: 100 °C, held for 60 s, 10 °C min~! up to 280 °C and held for 3 min. The transfer line and
detector temperatures were maintained throughout the analysis at 270 °C and 250 °C, respectively.
The source used for the ionization of molecules inside the mass spectrometer was the electronic impact,
with fixed ionization energy at 70 eV. Acquisition started 5 min after injection to prevent the solvent
band from ending up on the lit filament. The acquisition was made in full scan in a range of atomic
mass units between 75 and 400. Inside the ion trap, an inert gas (helium) was flowed at a rate of
0.3 mL min~!. The Xcalibur software allowed us to run a selected ion monitoring (SIM) display once
the full scan chromatogram was acquired. The analytes were examined by setting a separate display
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in two chromatograms, so that the peaks of the analytes were present on the first chromatogram and
the internal standard was present on the second chromatogram. Two fragments were chosen for each
analyte, the first with a relative abundance of 100% and the second specific for each compound. Since
phthalates have a common basic structure, fragment 149 was present in all phthalates except in DMP.

The quantitative analysis was performed using calibration graphs of the ratio Areagnalytes)/
Area(is anthracene) Plotted versus each concentration (pg uL~1). All the samples were determined in triplicate.

3. Results and Discussion

Following much experience developed by the authors in food and beverage samples, this paper
aimed to achieve the development of a simple analytical method to simultaneously determine PAE
and BPA. This determination was also favored by the high pre-concentration factors achieved during
the sample preparation procedure.

Basically, the initial idea was to extract PAEs and BPA from a 1 L aqueous solution. The pH
adjustment, the extraction solvent and its volume, the ultrasonic bath, the vortex time, and the
amount of NaCl for breaking the emulsion were fundamental analytical parameters to be studied
before applying the procedure to the real samples. Finally, 1 uL. was injected into the GC-IT/MS.
Figure 1 summarizes the extraction protocol.

Buffer, pH 5 200 pL di
Heptane

1L of water Ultra-sonication Separation

Figure 1. Master scheme of the extraction process procedure.
3.1. Evaluation of the Extraction Process

First, the best pH was studied, varying between 4 and 9. Solutions of HCl and NaOH 1 M, 0.1 M,
and 0.01 M were used to lower or to raise the pH value, respectively. The percent recoveries obtained at
pH 4 and those obtained at pH 5 were analytically significant; therefore, we can state that at acid pH the
extraction of the analytes took place quantitatively. However, the authors noted that the percentage of
errors increased at lower values of pH. Therefore, the experiments were carried out at pH 5. Figure 2 shows
the recoveries, together with the relative error bars in the pH range between 4 and 7.

100 -

80 A

60 A

Recovery (%)

40 -

20 A

DMP DEP DiBP DBP BP-A DEHP DOP

emmmpH 4 es==pH 5 e===pH 6 pH7 em==pH 8 em===pH 9

Figure 2. Percentage recoveries obtained at different pH extraction solutions. The relative standard
deviations (RSDs) of each measurement are reported as error bars.
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It should be noted that Figure 2 does not report recoveries above pH 7 because they are very
low with respect to this pH value. The reason should be due to the LS. ionization [64—-66] and thus,
the Areasnalyte/Arears ratio is completely altered. The methodology examined in this paper is based
on the dispersion of the extraction solvent in the solution. In this way, micro-droplets are formed
containing the extraction solvent and the solution becomes opalescent; the greater the opalescence,
the greater the dispersion, but at the same time the contact surface between the solvent and the
analyte is smaller. In this way, a stable dispersion is obtained and, very importantly, it does not
change for the whole analytical procedure. In the experiments, the authors deeply investigated the
analytical conditions, in particular the choice of the extraction solvent and the relative volume to be
used. Four different solvents were tested (i.e., n-hexane, n-heptane, iso-octane and benzene) at three
different volumes (150 uL, 200 puL, 250 pL). The choice of the extraction solvents was based on their
density, which had to be lower than that of water; thus, they could be directly recovered on the solution
using the Hamilton syringe. Solvent volumes were studied based on two considerations. Volumes
lower than 150 pL do not allow to recover any extraction solvent because the solvent layer shows a real
small thickness; on the other hand, a large drop is formed using extraction solvent volumes greater
than 250 pL (a bad condition for microextraction). Using an extraction solvent volume between 150
and 250 pL, the volume recovered at the top of the solution is between 90 and 160 pL. Figure 3 shows
the recoveries obtained using the four solvents together with the relative standard deviation (RSD)
reported as error bars for each measurement. The best recoveries are obtained by 200 uL of n-hexane.

100 100
- 80 _ 80
g g
g e Z 60
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Figure 3. Percentage recoveries obtained in relation to the volume and the solvent used: (a) n-hexane;
(b) n-heptane; (c) iso-octane; and (d) benzene. The RSDs of each measurement are reported as error bars.

Subsequently, two further important parameters for improving the extraction procedure, such as
the stirring time and the ultrasonic bath duration, were studied. Mixing times ranging between 5 and
25 min were studied, whereas experiments were performed with different ultrasound times of between
6 and 30 min to obtain the best analytical conditions. In fact, different tests were performed by varying
both parameters (individually or simultaneously), but no significant increase in analyte recoveries was
achieved. Consequently, the authors decided to perform 5 min of stirring time and 6 min of ultrasonic bath;
these conditions were sulfficient to obtain a reliable dispersion and a quantitative PAEs/BPA recovery.

The other fundamental step concerns the breaking of the emulsion, where a salt addition is
essential. Actually, the best method is to centrifuge the solution and obtain the separation of the two
phases; starting from 1 L, this procedure was difficult. The key already tested in previous papers [67,68]
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consisted of changing the solution polarity by salt addition. This event modified the ionic strength
of the solution and supported the separation between the polar phase and the apolar phase. At the
same time, the time required for separation decreased. The use of a stirring magnetic plate stressed
and increased the result. For this purpose, it was necessary to choose a strongly dissociated salt.
Among the different salts tested at different concentrations (i.e., NaCl, KCl, CH3;COONa, NH,4Cl),
sodium chloride was chosen because it allowed the best recoveries. Figure 4 reports the PAE/BPA
recoveries (in percentage) based on the different NaCl amounts added.

100 1 I I 1 I I
80
60
40
20
0
DMP DEP

DiBP DBP BP-A DEHP DOP

Recovery (%)

m5gl-1 m10gL-1 ®15gL-1 =20gL-1

Figure 4. Phthalate (or phthalates ester, PAE) and bisphenol A (BPA) recoveries obtained varying the NaCl
amount added for breaking the dispersion. The RSDs of each measurement are reported as error bars.

Looking at Figure 4, the major recoveries were obtained by adding 15 g L™! NaCl, ranging between
98 and 102%. The additions of smaller NaCl amounts were not adequate to break up the dispersion
and the analyte recoveries were not so good (<90% using 5 ¢ L™! and <95% using 10 g L™!), whereas
higher NaCl amounts did not increase the analyte recoveries, which remained constant around the
levels obtained using 15 g L™! (between 97 and 102% using 20 g L™1).

After the formation of the two phases, the extraction solvent recovery was recovered using
a special homemade laboratory glassware (Figure 5).

Figure 5. Close-up view of the extraction solvent recovery in a special homemade laboratory glassware.

This particular lab glassware, sealed, was built in our laboratory, with the apolar solvent being
collected in the thin-diameter glass tube, in particular a special fitting with sintered glass. The deionized
water, which was added to the flask on the right side, was used to grow the solvent level in the tube to
recover the extraction solvent, which was then injected directly into the GC-MS.

For a correct risk assessment of chemicals in each matrix, especially with respect to issues related
to public health problems, it is necessary to have a satisfactory analytical procedure. One of the most
important points is to examine the application of each procedure on a blank sample and on a real sample.
In this case, the authors applied the entire procedure to a distilled water sample (“blank solution”)
and to a tap water sample (“real sample”), both solutions being spiked with the mixed PAE/BPA
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standard solution (80 ng mL~! of each compound) and reaching comparable recoveries in both cases.
Table 1 shows the recoveries (as %) obtained by analyzing the two matrices; they range between 97.2
and 99.6% for the blank solution with a relative standard deviation (RSD) below 4.4 and between
95.1 and 98.8% for the real sample with an RSD below 8.7 (RSDs are reported in brackets). The good
agreement between the two datasets shows that the matrix effect is to be considered negligible.

Table 1. Evaluation (in terms of % recoveries) of the entire analytical procedure on the matrix effect: comparison
between a distilled water solution and a tap water sample (SD, standard deviation), both spiked with the same
mixed PAE/BPA standard solution (80 ng mL~! of each compound) (RSDs are reported in brackets).

Blank Solution Real Sample

Compound

% +SD (RSD) % + SD (RSD)

DMP 99.1 +£2.1(2.1) 97.5 +3.5(3.6)
DEP 99.6 + 1.6 (1.6) 97.9 +5.9 (6.0)
DiBP 98.5+3.1(3.1) 98.8 + 8.6 (8.7)
DBP 99.1 +£ 3.5 (3.5) 98.4 +3.8(3.9)
BPA 972 +4.3 (44) 95.1 + 6.2 (6.5)
DEHP 979+26(24)  963+52(54)
DOP 99.7 £1.7 (1.7) 982 +4.1(42)

3.2. Analytical Protocol Parameters

The analytical parameters of each compound (i.e., the correlation curve and relative correlation
coefficient 1, the limit of detection (LOD), the limit of quantification (LOQ), reproducibility, and precision)
were studied by applying the best experimental conditions to a real sample. Briefly, the optimal
conditions are as follows: 200 uL of n-hexane, used as extraction solvent, and 5 uL of anthracene
(1 mg mL!) are added to 1 L water sample (pH solution 5), followed by 5 min stirring time and 6 min
ultrasonic bath and addition of NaCl 15 g L=}, vortex for 10 min, and injection of 1 uL of the final solution.
The analyte extraction procedure was performed using the dispersive liquid-liquid microextraction
(DLLME) method. This step offers two advantages: the dispersive solvent, which substantially allows
and simplifies the dispersion of the extraction solvent, is not used (replaced by the ultrasonic bath step)
and, more importantly, an average pre-concentration factor of 5000.

Table 2 shows all the analytical parameters obtained using the best experimental conditions, namely,
the linear equations and the relative correlation coefficients (r) studied in the linear dynamic ranges
(LDRs) along with the limit of detection (LOD) and the limit of quantification (LOQ) of each compound.
These values were determined according to Knoll’s definition [69], that is, an analyte concentration that
produces a chromatographic peak is equal to three times (LOD) and seven times (LOQ) the standard
deviation of the baseline noise (this definition is based on the signal-to-noise approach).

Table 2. Linear dynamic range (LDR), linear equation, correlation coefficient (r), limit of detection
(LOD), and limit of quantification (LOQ) of each compound investigated in this study.

Compound (ngerE‘l) Correlation Curve r (ngLr(;]I?‘l) (nng(]?‘l) Limit
DMP 6-1500 y=2860x+0.516  0.9944 1 6 5.0
DEP 11-1500 y=1810x+0.130  0.9983 4 11 0.55%
DiBP 6-1500 y=1984x+0.227  0.9933 3 6 0.01P
DBP 5-1500 y=2493x+0.212  0.9981 2 5 0.45°
BPA 9-1500 y=2102x +0.295  0.9961 5 9 50¢

DEHP 9-1500 y=2392x+0.258  0.9972 1 9 gd
DOP 14-1500 y=2014x+0.253  0.9979 8 14

a, threshold limit value (TLV) expressed as mg L~ (US EPA, reference [70]); b, expressed as mg kg’l day/b.w. (EFSA,
ref. 31); ¢, as ug L~ (from the U.S. Food and Drug Administration, FDA); d, as ug L' (from the World Health
Organization, WHO).

Table 3 shows the recoveries for each compound at different concentrations and the intra-day
and inter-day precisions calculated by adding different PAE/BPA amounts to real water samples.
The recoveries were determined at two different concentrations, namely, at low, 30 ng mL™1, and high,
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300 ng mL~!, concentrations: in the first case, the recoveries vary between 93.4% (BPA) and 101.1%
(DiBP), whereas in the second case they vary between 95.7% (DEP) and 104.5% (DEHP). The intra-day
errors are between 3.6% and 7.4%, whereas the inter-day errors are less than 9.3%.

Table 3. Recovery (%) at different PAE/BPA spiking and method repeatability/reproducibility investigated
as intra-day and inter-day measurements (%).

Recovery Intra-day Inter-day
Compound
30ngmL~1 300ngmL-1 (RSD, %) (RSD, %)
DMP 96.5 98.3 42 7.9
DEP 99.1 95.7 5.4 7.3
DiBP 101.1 103.7 5.7 8.2
DBP 97.5 101.2 45 6.1
BPA 93.4 95.8 74 9.3
DEHP 98.1 104.5 3.6 5.1
DOP 99.4 102.6 41 6.7

Figure 6 shows the gas chromatogram of mixing PAE/BPA standard solution at the concentration
of 50 ng mL~! of each compound, whereas Figure 7 shows the gas chromatograms of (a) drinking
water sampled from plastic bottles and (b)the same sample spiked with the mixed PAE/BPA solution
(50 ng mL~! of each compound). As can be seen, the chromatograms are clear, which means that the
extraction procedure is effective and that the peaks are sharp and well resolved.

6

Figure 6. Gas chromatogram of mixed PAE/BPA standard (50 ng mL~! of each compound). Peaks: 1,
dimethyl phthalate (DMP); 2, diethyl phthalate (DEP); internal standard (IS); 3, diisobutyl phthalate
(DiBP); 4, dibutyl phthalate (DBP); 5, BPA; 6, diethylhexyl phthalate (DEHP); 7, di-n-octyl-phthalate
(DOP). For experimental conditions, see the text.

4 4

(@) (b)

Figure 7. Gas chromatograms of (a) a sample of drinking water without addition and (b) the same
drinking water sample spiked with 50 ng mL~! of PAEs and BPA. Peaks: 1, DMP; 2, DEP; 1.S.; 3, DiBP;
4, DBP; 5, BPA; 6, DEHP; 7, DOP. For experimental conditions, see the text.
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For a complete analytical characterization, a comparison was carried out between our main
results and those reported in the literature; in particular, recoveries, LODs and LOQs were compared
between different studies performed in the last decade for the simultaneous analysis of PAEs and BPA
in food/beverage matrices [51-53,71-78] (Table 4). As can be seen, the main basic PAEs analyzed in most
papers are DEP, DBP, and DEHP together with BPA, whereas only a few papers show a more complete
PAE speciation. According to the analytical parameters, our recoveries are acceptable compared to
the other studies; in addition, the LODs and LOQs are adequate for determining such compounds
in the water matrix, although Dévier et al. [52] achieved very low LODs and LOQs. It should be noted
that very good LODs and LOQs were achieved by Gosetti et al. [75]; PAEs and bisphenols (A and S)
were simultaneously analyzed at very low levels (0.8-15.5 and 2.3-46.9 ng L™!, with good recoveries
ranging between 95% and 109%). These parameters are better than those obtained by the authors;
it should be noted however that they were reached using a different methodology (SPE) and, essentially,
by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS),
a very expensive instrumentation. Furthermore, the matrix is different from that investigated in this
study. A similar consideration could be drawn by other authors. Finally, it should be noted that the
paper by Gorji et al. [77] shows interesting LODs and LOQs, but that the paper is focused only on the
determination of five PAEs (with no BPA).

Table 4. Analytical parameter comparison among different studies performed for simultaneous
PAEs/BPA determination in food and beverage matrices.

Compounds Matrix Recoveries (%) LODs/L (_)1Qs References
(ng mL~1)
DEP, DBP, BPA drinking water 62-105 7-29/23-442 [71]
DEHP, -BPA soft drinks, milk powder 83.0-102.5 13-21/46-66P [51]
DEP, DMP, DBP, BBP, -BPA, . b
DEHP, DOP French mineral waters 90-110 0.1-1.6/10-30 [52]
DMP, DEP, DBP, -BPA, DEHP seafood 57-119 0.034/0.64/-¢ [72]
mineral water, juice, soft
DEP, DBP, DEHP, BPA drinks, wine, beer, 90-100 0.04-0.38/- [73]
distilled beverages
DMP, DEP, DEP, DBP, BPA, -
BBP, DEHP, DOP honey 81.2-119.8 5-303/3-270 [53]
DEP, DBP, DEHP, BPA environmental water 75.3-84.3 2.0-8.5/6.6-28.0 [74]
BPA, BP-S, DBP, DEHP, DEP medical devices 95.7-109 0.8-15.5/2.3-46.9° [75]
ready-to-eat plastic N 10 Bac
BPAF, BPA, BPB, BPS, BPP packaged baby foods 91-106 0.1-1/0.5-4 [76]
DMP, DEP, DiBF, DBP, DEHp |, ater and liquid food 87.4-106.9 0.008-1/0.026-3.26 [77]
from reused plastic bottles
DEP, DBP, BPA, BBP, DEHP fruit juice 81.9-109.6 20-300/60-1100 [78]
DMP, DEP, DiBP, DBP, BPA, . .
DEHP, DOP mineral water, tap water 93.4-104.5 1-8/6-14 This study

a: expressed as g mL™!; b: expressed as ng L™; c: expressed as ng g~

3.3. Real Sample Application

Finally, the water contained in 15 containers for different uses was analyzed. In particular,
we examined six bottles of water with a volume of between 1 and 2 L, all in polyethylene terephthalate,
but with different consistency and color; three baby bottles, two of which were in low-density
polyethylene and one in polyethylene; and, finally, six sport bottles, five of which were made of
polyethylene and one of low-density polyethylene.

The determination of the water bottles was carried out using all the available volume, whereas for
the bottles and sport bottles the volume was increased to 1 L with ultra-pure water. After measuring
the blank, release tests were performed for the bottles after a week, fifteen days, a month, and two
months. For the feeding bottles and sport bottles, the study was concentrated in a few hours, because
the use of these containers was limited in time; the analyses were carried out each hour during a total
period of six hours. Only in two of the fifteen samples did the release of phthalates from the vessel



Appl. Sci. 2019, 9, 2945 110f15

appear relevant; in particular, the releases of DiBP and DBP from a sport bottle (Figure 8a) and of
DEHP and DOP from a bottle (Figure 8b) were found. Regarding BPA, it should be noted that it was
not found in any sample. The three baby bottles and the two sport bottles carried the label “BPA-free”
and this justifies why it was not found. The six bottles did not show any information as the other sport
bottles used for the analysis, so it is difficult to extrapolate considerations on the reasons for the lack of
BPA determination.

a) » b)

20 =a—DiBP =4=DBP - “—DEHP DOP

0 1 > 3 i 5 A 7 ) 10 x 0 4 50

Fime (da
Ime (hour) Time (days)

Figure 8. Kinetics of release from (a) a sport bottle (DiBP and DBP) and (b) a bottle (DEHP and DOP).
4. Conclusions

The importance of a simultaneous determination of PAEs and BPA in different matrices (alimentary,
environmental, biological fluids, etc.) is still an important issue. A further proof of this importance
is that only 30 papers have been published since 2015, whereas more than 1000 papers deal with
PAE determination in the same period (source: Scopus) and more than 2000 papers deal with BPA
determination. Among the different methods investigated for this simultaneous determination,
no official approach has been established, while many authors have developed different procedures.
The protocol proposed in this study manages to analyze PAEs and BPA simultaneously in beverages
contaminated by the release of such compounds from plastic bottles. The protocol does not require
toxic solvents (except a small amount of hexane) and also saves the operator and the environment.
At the same time, obtaining a pre-concentration factor of 5,5000 allows these compounds to be detected
at very low levels in such matrices. To this end, the authors applied the entire procedure to 15 water
samples after a long contact with the plastic and identified the presence of DiBP, DBP, DEHP, and DOP
at a concentration below 1.2 ng mL ! in two water samples.
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