Stress Response of Miscanthus Plants and Soil Microbial Communities: A Case Study in Metals and Hydrocarbons Contaminated Soils
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Agrochemical Soil Analysis
2.3. Heavy Metals Analysis
2.4. Aliphatic Petroleum Hydrocarbons Analysis
2.5. Chlorophyll Fluorescence
2.6. Microscopy
2.7. Soil Microbial Communities
2.8. Statistics
3. Results
3.1. Soil Agrochemical Parameters
3.2. Contamination
3.3. Biomass
3.4. Chlorophyll Fluorescence
3.5. Microscopy
3.6. Soil Microbial Communities
4. Discussion
4.1. Plant Stress Indicators
4.2. Microbial Stress Indicators
4.3. Application for Phytomanagement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ashraf, M.A.; Maah, M.J.; Yusoff, I. Soil Contamination, Risk Assessment and Remediation. In Environmental Risk Assessment of Soil Contamination; Hernandez Soriano, M.C., Ed.; IntechOpen: London, UK, 2014; pp. 1–56. ISBN 978-953-51-1235-8. [Google Scholar]
- Gerwin, W.; Repmann, F.; Galatsidas, S.; Vlachaki, D.; Gounaris, N.; Baumgarten, W.; Volkmann, C.; Keramitzis, D.; Kiourtsis, F.; Freese, D. Assessment and quantification of marginal lands for biomass production in Europe using soil-quality indicators. Soil 2018, 4, 267–290. [Google Scholar] [CrossRef] [Green Version]
- Pidlisnyuk, V.; Stefanovska, T.; Lewis, E.E.; Erickson, L.E.; Davis, L.C. Miscanthus as a productive biofuel crop for phytoremediation. CRC Crit. Rev. Plant Sci. 2014, 33, 1–19. [Google Scholar] [CrossRef]
- Pogrzeba, M.; Rusinowski, S.; Krzyżak, J. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest. Environ. Sci. Pollut. Res. 2018, 25, 12096–12106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pidlisnyuk, V.; Erickson, L.; Stefanovska, T.; Popelka, J.; Hettiarachchi, G.; Davis, L.; Trögl, J. Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus. Environ. Pollut. 2019, 249, 330–337. [Google Scholar] [CrossRef]
- Wanat, N.; Austruy, A.; Joussein, E.; Soubrand, M.; Hitmi, A.; Gauthier-Moussard, C.; Lenain, J.-F.; Vernay, P.; Munch, J.C.; Pichon, M. Potentials of Miscanthus x giganteus grown on highly contaminated Technosols. J. Geochem. Explor. 2013, 126–127, 78–84. [Google Scholar] [CrossRef]
- Andrejić, G.; Šinžar-Sekulić, J.; Prica, M.; Dželetović, Ž.; Rakić, T. Phytoremediation potential and physiological response of Miscanthus × giganteus cultivated on fertilized and non-fertilized flotation tailings. Environ. Sci. Pollut. Res. 2019, 26, 34658–34669. [Google Scholar] [CrossRef]
- Cadoux, S.; Riche, A.B.; Yates, N.E.; Machet, J.-M. Nutrient requirements of Miscanthus x giganteus: Conclusions from a review of published studies. Biomass Bioenergy 2012, 38, 14–22. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Christensen, B.T.; Lærke, P.E.; Jørgensen, U.; Kandel, T.P.; Thomsen, I.K. Storage of Miscanthus-derived carbon in rhizomes, roots, and soil. Can. J. Soil Sci. 2016, 96, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Nebeská, D.; Trögl, J.; Pidlisnyuk, V.; Popelka, J.; Veronesi Dáňová, P.; Usťak, S.; Honzík, R. Effect of Growing Miscanthus x giganteus on soil microbial communities in post-military soil. Sustainability 2018, 10, 4021. [Google Scholar] [CrossRef] [Green Version]
- Brosse, N.; Dufour, A.; Meng, X.; Sun, Q.; Ragauskas, A.J. Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels Bioprod. Biorefining 2012, 6, 580–598. [Google Scholar] [CrossRef]
- Van Der Weijde, T.; Alvim Kamei, C.L.; Torres, A.F.; Evermerris, W.; Edolstra, O.; Visser, R.G.F.; Trindade, L.M. The potential of C4 grasses for cellulosic biofuel production. Front. Plant Sci. 2013, 4, 107. [Google Scholar] [CrossRef] [Green Version]
- van Hulle, S.; van Waes, C.; De Vliegher, A.; Baert, J.; Muylle, H. Comparison of dry matter yield of lignocellulosic perennial energy crops in a longterm Belgian field experiment. In Proceedings of the Grassland Science in Europe: Grassland—A European Resource, Lublin, Poland, 3–7 June 2012; pp. 499–501. [Google Scholar]
- Daraban, A.E.; Jurcoane, Ş.; Voicea, I.; Voicu, G. Miscanthus giganteus biomass for sustainable energy in small scale heating systems. Agric. Agric. Sci. Procedia 2015, 6, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Nsanganwimana, F.; Pourrut, B.; Mench, M.; Douay, F. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manag. 2014, 143, 123–134. [Google Scholar] [CrossRef]
- Técher, D.; Laval-Gilly, P.; Henry, S.; Bennasroune, A.; Formanek, P.; Martinez-Chois, C.; D’Innocenzo, M.; Muanda, F.; Dicko, A.; Rejšek, K.; et al. Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: An in vitro study. Sci. Total. Environ. 2011, 409, 4489–4495. [Google Scholar] [CrossRef] [PubMed]
- Techer, D.; D’Innocenzo, M.; Laval-Gilly, P.; Henry, S.; Bennasroune, A.; Martinez-Chois, C.; Falla, J. Assessment of Miscanthus×giganteus secondary root metabolites for the biostimulation of PAH-utilizing soil bacteria. Appl. Soil Ecol. 2012, 62, 142–146. [Google Scholar] [CrossRef]
- Techer, D.; Martinez-Chois, C.; Laval-Gilly, P.; Henry, S.; Bennasroune, A.; D’Innocenzo, M.; Falla, J. Assessment of Miscanthus×giganteus for rhizoremediation of long term PAH contaminated soils. Appl. Soil Ecol. 2012, 62, 42–49. [Google Scholar] [CrossRef]
- Nurzhanova, A.; Pidlisnyuk, V.; Kalugin, S.; Stefanovska, T.; Drimal, M. Miscanthus x giganteus as a new highly efficient phytoremediation agent for improving soils contaminated by pesticides residues and supplemented contaminants. Commun. Agric. Appl. Boil. Sci. 2015, 80, 361–366. [Google Scholar]
- Lim, M.W.; Von Lau, E.; Poh, P.E. A comprehensive guide of remediation technologies for oil contaminated soil—Present works and future directions. Mar. Pollut. Bull. 2016, 109, 14–45. [Google Scholar] [CrossRef]
- Megharaj, M.; Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; Naidu, R. Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int. 2011, 37, 1362–1375. [Google Scholar] [CrossRef]
- Da Costa, R.M.F.; Simister, R.; Roberts, L.A.; Timms-Taravella, E.; Cambler, A.B.; Corke, F.M.K.; Han, J.; Ward, R.J.; Buckeridge, M.S.; Gomez, L.D.; et al. Nutrient and drought stress: Implications for phenology and biomass quality in miscanthus. Ann. Bot. 2019, 124, 553–566. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Vegetation stress: An introduction to the stress concept in plants. J. Plant Physiol. 1996, 148, 4–14. [Google Scholar] [CrossRef]
- He, J.X.; Wang, J.; Liang, H.G. Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol. Plant. 1995, 93, 771–777. [Google Scholar] [CrossRef]
- Baker, N.R. A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol. Plant. 1991, 81, 563–570. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.G. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteriatle. Photochem. Photobiol. 1995, 61, 32–42. [Google Scholar] [CrossRef]
- Strasser, R.J.; Greppin, H. Primary reactions of photochemistry in higher plants. In Photosynthesis III: Structure and Molecular Organisation of the Photosynthetic Apparatus; Akoyunoglou, G., Ed.; Balaban International Science Services: Philiadelphia, PA, USA, 1981; pp. 717–726. [Google Scholar]
- Strasser, R.J.; Stirbet, A.D. Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O–J–I–P). Math. Comput. Simul. 1998, 48, 3–9. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 321–362. [Google Scholar]
- Butler, W.L.; Strasser, R.J. Tripartite model for the photochemical apparatus of green plant photosynthesis. Proc. Natl. Acad. Sci. USA 1977, 74, 3382–3385. [Google Scholar] [CrossRef] [Green Version]
- Truu, J.; Truu, M.; Espenberg, M.; Nõlvak, H.; Juhanson, J. Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: A review. Open Biotechnol. J. 2015, 9, 85–92. [Google Scholar] [CrossRef]
- Ministry of the Environment of the Czech Republic. Vyhláška č. 153/2016 Sb. o Stanovení Podrobností ochrany Kvality Zemědělské Půdy a o Změně Vyhlášky č. 13/1994 Sb., kterou se Upravují Některé Podrobnosti ochrany Zemědělského Půdního Fondu. 2016. Available online: https://www.mzp.cz/www/platnalegislativa.nsf/334D37465BA483E2C125800A0029EF9C/%24file/V153_2016.pdf (accessed on 19 February 2021)[In Czech].
- Machackova, J.; Wittlingerova, Z.; Vlk, K.; Zima, J.; Linka, A. Comparison of Two Methods for Assessment of In Situ Jet-fuel Remediation Efficiency. Water Air Soil Pollut. 2007, 187, 181–194. [Google Scholar] [CrossRef]
- Macháčková, J.; Wittlingerova, Z.; Vlk, K.; Zima, J. Major factors affecting in situ biodegradation rates of jet-fuel during large-scale biosparging project in sedimentary bedrock. J. Environ. Sci. Heal. Part A Toxic Hazard. Subst. Environ. Eng. 2012, 47, 1152–1165. [Google Scholar] [CrossRef]
- Kakosová, E.; Hrabák, P.; Černík, M.; Novotný, V.; Czinnerová, M.; Trögl, J.; Popelka, J.; Kuráň, P.; Zoubková, L.; Vrtoch, Ľ. Effect of various chemical oxidation agents on soil microbial communities. Chem. Eng. J. 2017, 314, 257–265. [Google Scholar] [CrossRef]
- Trögl, J.; Esuola, C.O.; Kříženecká, S.; Kuráň, P.; Seidlová, L.; Veronesi-Dáňová, P.; Popelka, J.; Babalola, O.O.; Hrabák, P.; Czinnerová, M.; et al. Biodegradation of high concentrations of aliphatic hydrocarbons in soil from a petroleum refinery: Implications for applicability of new actinobacterial strains. Appl. Sci. 2018, 8, 1855. [Google Scholar] [CrossRef] [Green Version]
- Zbíral, J.; Malý, S.; Váňa, M.; Čuhel, J.; Fojtlová, E.; Čižmár, D.; Žalmanová, A.; Srnková, J.; Obdržálková, E. Jednotné Pracovní Postupy: Analýza půd III; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 2011; [In Czech]. [Google Scholar]
- Zbíral, J.; Čižmárová, E.; Obdržálková, E.; Rychlý, M.; Vilamová, V.; Srnková, J.; Žalmanová, A. Jednotné pracovní postupy: Analýza půd I; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 2016; [In Czech]. [Google Scholar]
- Czech Normalization Institute. ČSN EN 14039 (838025): Characterization of Waste—Determination of Hydrocarbon Content in the Range of C10 to C40 by Gas Chromatography. 2005. Available online: https://standards.iteh.ai/catalog/standards/sist/d3d6675b-b3c0-4b3e-9b28-9359c4173d57/sist-en-14039-2005 (accessed on 19 February 2021).
- Kuráň, P.; Nováková, J.; Janoš, P. Determination of hydrocarbon index of C10-C40 in composts and sludges by GC-FID with traditional split/splitless injector. Chem. List. 2011, 105, 133–137. [Google Scholar]
- Krause, G.H.; Weis, E. Chlorophyll fluorescence as a tool in plant physiology—II. Interpretation of fluorescence signals. Photosynth. Res. 1984, 5, 139–157. [Google Scholar] [CrossRef]
- Rusinowski, S.; Krzyżak, J.; Sitko, K.; Kalaji, H.; Jensen, E.; Pogrzeba, M. Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits. Environ. Pollut. 2019, 250, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Malinská, H.; Pidlisnyuk, V.; Nebeská, D.; Erol, A.; Medžová, A.; Trögl, J. Physiological response of Miscanthus x giganteus to plant growth regulators in nutritionally poor soil. Plants 2020, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Kukla, J.; Holec, M.; Trögl, J.; Holcová, D.; Hofmanová, D.; Kuran, P.; Popelka, J.; Pacina, J.; Kříženecká, S.; Usťak, S.; et al. Tourist traffic significantly affects microbial communities of sandstone cave sediments in the protected landscape area “Labské Pískovce” (Czech Republic): Implications for regulatory measures. Sustainability 2018, 10, 396. [Google Scholar] [CrossRef] [Green Version]
- Kuráň, P.; Trögl, J.; Nováková, J.; Pilařová, V.; Dáňová, P.; Pavlorková, J.; Kozler, J.; Novák, F.; Popelka, J. Biodegradation of spilled diesel fuel in agricultural soil: Effect of humates, zeolite, and bioaugmentation. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Kaur, A.; Chaudhary, A.; Kaur, A.; Choudhary, R.; Kaushik, R. Phospholipid fatty acid—A bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. 2005, 89. [Google Scholar] [CrossRef]
- Baldrian, P.; Trögl, J.; Frouz, J.; Šnajdr, J.; Valášková, V.; Merhautová, V.; Cajthaml, T.; Herinková, J. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biol. Biochem. 2008, 40, 2107–2115. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Ministry of Agriculture of the Czech Republic. Vyhláška č. 335/2017 Sb. Vyhláška, Kterou se Mění Vyhláška č. 275/1998 Sb., o Agrochemickém Zkoušení Zemědělských půd a Zjišťování Půdních Vlastností Lesních Pozemků. 2017. Available online: http://eagri.cz/public/web/ws_content?contentKind=regulation§ion=1&id=89157&name=335/2017 (accessed on 19 February 2021)[In Czech].
- Roberts, T.L. Cadmium and phosphorous fertilizers: The issues and the science. Procedia Eng. 2014, 83, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Moore-Kucera, J.; Dick, R.P. PLFA Profiling of microbial community structure and seasonal shifts in soils of a douglas-fir chronosequence. Microb. Ecol. 2008, 55, 500–511. [Google Scholar] [CrossRef]
- Shulaev, V.; Cortes, D.; Miller, G.; Mittler, R. Metabolomics for plant stress response. Physiol. Plant. 2008, 132, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef] [Green Version]
- Pogrzeba, M.; Rusinowski, S.; Sitko, K.; Krzyżak, J.; Skalska, A.; Małkowski, E.; Ciszek, D.; Werle, S.; McCalmont, J.P.; Mos, M.; et al. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Environ. Pollut. 2017, 225, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef]
- Andrejic, G.; Gajic, G.; Prica, M.; Dzeletovic, Z.; Rakic, T. Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus x giganteus plants. Photosynthetica 2018, 56, 1249–1258. [Google Scholar] [CrossRef]
- Al Souki, K.S. Soil-Plant Interactions in the Context of Phytomanagement of Soil Contaminated by Metals: Application to Miscanthus x Giganteus. 2017. Available online: https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/3d97d962-4ef8-48b3-8a97-ba14e363e0ee (accessed on 19 February 2021).
- Pelfrêne, A.; Kleckerova, A.; Pourrut, B.; Nsanganwimana, F.; Douay, F.; Waterlot, C. Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: Comparison between greenhouse and field experiments. Environ. Sci. Pollut. Res. 2015, 22, 3043–3054. [Google Scholar] [CrossRef]
- Oukarroum, A.; El Madidi, S.; Schansker, G.; Strasser, R.J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 2007, 60, 438–446. [Google Scholar] [CrossRef]
- Bilska-Kos, A.; Panek, P.; Szulc-Głaz, A.; Ochodzki, P.; Cisło, A.; Żebrowski, J. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.). J. Plant Physiol. 2018, 228, 178–188. [Google Scholar] [CrossRef]
- Tyagi, M.; Da Fonseca, M.M.R.; De Carvalho, C.C.C.R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biogeochem. 2010, 22, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Frostegård, Å.; Tunlid, A.; Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 2011, 43, 1621–1625. [Google Scholar] [CrossRef]
- Bourgeois, E.; Dequiedt, S.; Lelièvre, M.; Van Oort, F.; Lamy, I.; Ranjard, L.; Maron, P.A. Miscanthus bioenergy crop stimulates nutrient-cycler bacteria and fungi in wastewater-contaminated agricultural soil. Environ. Chem. Lett. 2015, 13, 503–511. [Google Scholar] [CrossRef]
- Al Souki, K.S.; Louvel, B.; Douay, F.; Pourrut, B. Assessment of Miscanthus x giganteus capacity to restore the functionality of metal-contaminated soils: Ex situ experiment. Appl. Soil Ecol. 2017, 115, 44–52. [Google Scholar] [CrossRef]
- Kocoń, A.; Jurga, B. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Environ. Sci. Pollut. Res. 2017, 24, 4990–5000. [Google Scholar] [CrossRef] [Green Version]
- Nebeská, D.; Trögl, J.; Žofková, D.; Voslařová, A.; Štojdl, J.; Pidlisnyuk, V. Calorific values of Miscanthus x giganteus biomass cultivated under suboptimal conditions in marginal soils. Stud. Oecologica 2019, 13, 61–67. [Google Scholar] [CrossRef]
Parameter | AGR | MIL | OIL | Preventive Value * |
---|---|---|---|---|
pH (KCl) a | 6.27 | 6.61 | 7.30 | - |
Available P [mg/kg dw] a | 249 | 40 | 28 | - |
Available K [mg/kg dw] a | 83 | 59 | 764 | - |
Available Ca [mg/kg dw] a | 833 | 671 | 4409 | - |
Available Mg [mg/kg dw] a | 79 | 86 | 205 | - |
TOC [% dw] b | 1.14 ± 0.05 a | 1.24 ± 0.10 a | 4.46 ± 0.32 b | - |
Ntot [% dw] a | 0.66 | 0.57 | 0.68 | - |
S [% dw] a | 0.09 | 0.14 | 0.22 | - |
Contamination [mg/kg dw] | ||||
C10-C40 b | <100 a | <100 a | 8642 ± 351 b | 100 |
Cd (aqua regia) a | 1.73 | 0.91 | 2.07 | 0.5 |
Pb (aqua regia) a | 15.23 | 73.22 | 86.13 | 60 |
Zn (aqua regia) a | 38.83 | 308.48 | 312.01 | 120 |
Cd (CaCl2) a | 0.05 | <0.01 | 0.01 | - |
Pb (CaCl2) a | 0.01 | <0.01 | <0.01 | - |
Zn (CaCl2) a | 4.21 | 5.13 | 4.35 | - |
Variant | C10-C40 [mg/kg dw] | ||
---|---|---|---|
Start | 1st Season | 2nd Season | |
AGR | <100 a | <100 a | <100 a |
MIL | <100 a | <100 a | <100 a |
OIL | 8 642 ± 351 b | 6 854 ± 782 c | 5 155 ± 701 d |
Parameter | AGR | MIL | OIL | |||
---|---|---|---|---|---|---|
Start | End | Start | End | Start | End | |
Respiration [mU/g dw] a | 3.63 ± 0.55 a | 2.78 ± 1.5 a | 3.17 ± 0.55 a | 3.42 ± 0.98 a | 6.35 ± 1.30 b | 4.8 ± 0.94 ab |
Dehydrogenase [µU/g dw] a | 5.10 ± 0.22 a | 0.82 ± 0.5 b | 0.22 ± 0.20 b | 0.69 ± 0.26 b | 8.70 ± 2.28 c | 0.71 ± 0.64 b |
Phosphatase [µU/g dw] b | 9.81 ± 1.68 a | 25.30 ± 2.63 b | 43.49 ± 2.22 c | 14.95 ± 2.45 a | 18.62 ± 1.26 b | 21.93 ± 4.12 b |
Arylsulphatase [µU/g dw] b | 0.87 ± 0.28 a | 1.15 ± 0.16 a | 2.70 ± 0.18 b | 0.39 ± 0.09 c | 0.90 ± 0.13 a | 0.66 ± 0.24 ad |
Protease [µU/g dw] b | 6.21 ± 0.71 a | 9.63 ± 1.04 b | 13.34 ± 2.14 c | 8.47 ± 1.71 ab | 13.99 ± 0.64 c | 24.06 ± 2.18 d |
Glucosidase [µU/g dw] b | 2.41 ± 0.47 a | 3.02 ± 0.1 b | 5.03 ± 0.24 c | 1.16 ± 0.19 d | 1.45 ± 0.06 d | 0.67 ± 0.08 e |
PLFAtot [mg/kg dw] b | 10.55 ± 3.65 a | 14.56 ± 3.76 a | 11.45 ± 1.45 a | 16.13 ± 3.17 a | 19.69 ± 5.01 a | 22.64 ± 7.34 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nebeská, D.; Auer Malinská, H.; Erol, A.; Pidlisnyuk, V.; Kuráň, P.; Medžová, A.; Smaha, M.; Trögl, J. Stress Response of Miscanthus Plants and Soil Microbial Communities: A Case Study in Metals and Hydrocarbons Contaminated Soils. Appl. Sci. 2021, 11, 1866. https://doi.org/10.3390/app11041866
Nebeská D, Auer Malinská H, Erol A, Pidlisnyuk V, Kuráň P, Medžová A, Smaha M, Trögl J. Stress Response of Miscanthus Plants and Soil Microbial Communities: A Case Study in Metals and Hydrocarbons Contaminated Soils. Applied Sciences. 2021; 11(4):1866. https://doi.org/10.3390/app11041866
Chicago/Turabian StyleNebeská, Diana, Hana Auer Malinská, Anna Erol, Valentina Pidlisnyuk, Pavel Kuráň, Andrea Medžová, Martin Smaha, and Josef Trögl. 2021. "Stress Response of Miscanthus Plants and Soil Microbial Communities: A Case Study in Metals and Hydrocarbons Contaminated Soils" Applied Sciences 11, no. 4: 1866. https://doi.org/10.3390/app11041866
APA StyleNebeská, D., Auer Malinská, H., Erol, A., Pidlisnyuk, V., Kuráň, P., Medžová, A., Smaha, M., & Trögl, J. (2021). Stress Response of Miscanthus Plants and Soil Microbial Communities: A Case Study in Metals and Hydrocarbons Contaminated Soils. Applied Sciences, 11(4), 1866. https://doi.org/10.3390/app11041866