Optimization of Computer Numerical Control Interpolation Parameters Using a Backpropagation Neural Network and Genetic Algorithm with Consideration of Corner Vibrations
Abstract
:1. Introduction
2. Introduction of Interpolator
3. Experimental Procedure and Analysis Process
3.1. Experimental Designs
3.2. Preprocessing of the Data into Performance Index
3.2.1. Analysis of Contour Error and MT
3.2.2. Analysis of CVibs
4. Modeling and Optimization Concerns
4.1. Z-Score (Standard Score)
4.2. BPNN Algorithm
4.3. Design Optimization Concerns and Components of the Multi-Objective Function
4.4. Verification by Employing a Complex Path
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyu, D.; Liu, Q.; Liu, H.; Zhao, W. Dynamic error of CNC machine tools: A state-of-the-art review. J. Adv. Manuf. Technol. 2020, 106, 1869–1891. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Lee, C.C. Motion controller design for contour-following tasks based on real-time contour error estimation. IEEE Tran. Ind. Electron. 2007, 54, 1686–1695. [Google Scholar] [CrossRef]
- Sencer, B.; Ishizaki, K.; Shamoto, E. High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools. CIRP Ann. 2015, 64, 369–372. [Google Scholar] [CrossRef]
- de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R.A.; Cabal-Yepez, E.; Dominguez-Gonzalez, A. FPGA-based vibration analyzer for continuous CNC machinery monitoring with fused FFT-DWT signal processing. IEEE Tran. Instrum. Meas. 2010, 59, 3184–3194. [Google Scholar] [CrossRef]
- Sangwan, K.S.; Saxena, S.; Kant, G. Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. Procedia. Cirp. 2015, 29, 305–310. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Chen, J.C.; Kirby, E.D. Surface roughness optimization in an end-milling operation using the Taguchi design method. J. Mater. Process. Technol. 2007, 184, 233–239. [Google Scholar] [CrossRef]
- Benardos, P.G.; Vosniakos, G.C. Predicting surface roughness in machining: A review. J. Mach. Tools Manuf. 2003, 43, 833–844. [Google Scholar] [CrossRef]
- Alonso, F.J.; Salgado, D.R. Analysis of the structure of vibration signals for tool wear detection. Mech. Syst. Signal Proc. 2008, 22, 735–748. [Google Scholar] [CrossRef]
- Okwudire, C.; Ramani, K.; Duan, M.A. trajectory optimization method for improved tracking of motion commands using CNC machines that experience unwanted vibration. CIRP Ann. 2016, 65, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Bringmann, B.; Maglie, P. A method for direct evaluation of the dynamic 3D path accuracy of NC machine tools. CIRP Ann. 2009, 58, 343–346. [Google Scholar] [CrossRef]
- Erkorkmaz, K.; Altintas, Y. High speed CNC system design. Part III: High speed tracking and contouring control of feed drives. J. Mach. Tools Manuf. 2001, 41, 1637–1658. [Google Scholar] [CrossRef]
- Tsai, M.S.; Huang, Y.C. A novel integrated dynamic acceleration/deceleration interpolation algorithm for a CNC controller. J. Adv. Manuf. Technol. 2016, 87, 279–292. [Google Scholar] [CrossRef]
- Altintas, Y.; Brecher, C.; Weck, M.; Witt, S. Virtual machine tool. CIRP Ann. 2005, 54, 115–138. [Google Scholar] [CrossRef]
- Zain, A.M.; Haron, H.; Sharif, S. Prediction of surface roughness in the end milling machining using Artificial Neural Network. Expert. Syst. Appl. 2010, 37, 1755–1768. [Google Scholar] [CrossRef]
- Chiu, H.W.; Lee, C.H. Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach. Adv. Eng. Softw. 2017, 114, 246–257. [Google Scholar] [CrossRef]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Tsai, J.T.; Chou, J.H.; Liu, T.K. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans. Neural. Netw. 2006, 17, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Asiltürk, I.; Akkuş, H. Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement 2011, 44, 1697–1704. [Google Scholar] [CrossRef]
- Urbikain, G.; Campa, F.J.; Zulaika, J.J.; De Lacalle, L.N.L.; Alonso, M.A.; Collado, V. Preventing chatter vibrations in heavy-duty turning operations in large horizontal lathes. J. Sound Vib. 2015, 340, 317–330. [Google Scholar] [CrossRef]
- Garitaonandia, I.; Fernandes, M.H.; Albizuri, J. Dynamic model of a centerless grinding machine based on an updated FE model. J. Mach. Tools Manuf. 2008, 48, 832–840. [Google Scholar] [CrossRef]
- Mi, L.; Yin, G.F.; Sun, M.N.; Wang, X.H. Effects of preloads on joints on dynamic stiffness of a whole machine tool structure. J. Mech. Sci. Technol. 2012, 26, 495–508. [Google Scholar] [CrossRef]
- Erkorkmaz, K.; Altintas, Y. High speed CNC system design. Part I: Jerk limited trajectory generation and quintic spline interpolation. J. Mach. Tools Manuf. 2001, 41, 1323–1345. [Google Scholar] [CrossRef]
- Suh, S.H.; Kang, S.K.; Chung, D.H.; Stroud, I. Theory and Design of CNC Systems; Springer Science & Business Media: London, UK, 2008. [Google Scholar]
- Jahanpour, J.; Alizadeh, M.R. A novel acc-jerk-limited NURBS interpolation enhanced with an optimized S-shaped quintic feedrate scheduling scheme. J. Adv. Manuf. Technol. 2015, 77, 1889–1905. [Google Scholar] [CrossRef]
- Chen, C.S.; Lee, A.C. Design of acceleration/deceleration profiles in motion control based on digital FIR filters. J. Mach. Tools Manuf. 1998, 38, 799–825. [Google Scholar] [CrossRef] [Green Version]
- Hagan, M.T.; Demuth, H.B.; Beale, M.; De Jesus, O. Neural Network Design Boston; PWS-Kent: Plaza Boston, MA, USA, 1996; pp. 11–17. [Google Scholar]
- Medan, N.; Lobontiu, M.; Nagy, S.R.; Dezső, G. Taguchi versus full factorial design to determine the equation of impact forces produced by water jets used in sewer cleaning. In Proceedings of the MATEC Web of Conferences, Iasi, Romania, 24–27 May 2017; Volume 112, p. 03007. [Google Scholar]
Para. | Contour Errors | Machining Time | Corner Vibrations |
---|---|---|---|
| | | |
| | | |
| | | |
| | | |
| | |
Parameter | Unit | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|---|
900 | 1500 | 2100 | 2700 | ||
35 | 42 | 49 | 56 | ||
0 | 8 | 16 | 24 | ||
220 | 340 | 460 | 580 | ||
300 | 500 | 1000 | 1500 |
MCoE | MT | CVib | |
---|---|---|---|
RMSE of training | 0.0587 (μm) | 0.0006 (s) | 0.38 () |
RMSE of validation | 1.0976 (μm) | 0.1305 (s) | 3.14 () |
ME of training | 4.9264 (μm) | 0.2883 (s) | 4.48 ) |
ME of validation | 5.5356 (μm) | 0.5847 (s) | 8.28 () |
Multi-Objective Function | Constraints |
---|---|
L = w1 × f1 + w2 × f2 + w3 × f3 Minimum L | 900 2700 35 56 0 24 220 580 300 1500 |
Case | 1 | 2 | 3 | 4 |
---|---|---|---|---|
(w1, w2, w3) | (1, 0, 0) | (0, 1, 0) | (0, 0, 1) | (0.5, 0.2, 0.5) |
() | 900 | 2079 | 1575 | 900 |
() | 35 | 42 | 55 | 35 |
() | 23 | 0 | 6 | 23 |
() | 220 | 579 | 220 | 220 |
() | 300 | 1499 | 300 | 884 |
Case | MCoE | MT (s) | CVib | |
---|---|---|---|---|
1 | Pred. | 15.9 | 24.012 | 10.4 |
Exp. | 17.1 | 24.085 | 14.1 | |
Error * | −1.2 | −0.073 | −3.7 | |
2 | Pred. | 100.1 | 5.009 | 63.8 |
Exp. | 99.7 | 4.867 | 69.7 | |
Error * | 0.4 | 0.142 | −5.9 | |
3 | Pred. | 24.5 | 24.029 | 5.0 |
Exp. | 25.0 | 24.075 | 4.6 | |
Error * | −0.5 | −0.046 | 0.4 | |
4 | Pred. | 23.4 | 8.060 | 5.4 |
Exp. | 23.8 | 8.299 | 9.0 | |
Error * | −0.4 | −0.239 | −3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, H.-C.; Tsai, M.-S.; Cheng, C.-C.; Li, C.-J. Optimization of Computer Numerical Control Interpolation Parameters Using a Backpropagation Neural Network and Genetic Algorithm with Consideration of Corner Vibrations. Appl. Sci. 2021, 11, 1665. https://doi.org/10.3390/app11041665
Tseng H-C, Tsai M-S, Cheng C-C, Li C-J. Optimization of Computer Numerical Control Interpolation Parameters Using a Backpropagation Neural Network and Genetic Algorithm with Consideration of Corner Vibrations. Applied Sciences. 2021; 11(4):1665. https://doi.org/10.3390/app11041665
Chicago/Turabian StyleTseng, Hsiang-Chun, Meng-Shiun Tsai, Chih-Chun Cheng, and Chen-Jung Li. 2021. "Optimization of Computer Numerical Control Interpolation Parameters Using a Backpropagation Neural Network and Genetic Algorithm with Consideration of Corner Vibrations" Applied Sciences 11, no. 4: 1665. https://doi.org/10.3390/app11041665
APA StyleTseng, H.-C., Tsai, M.-S., Cheng, C.-C., & Li, C.-J. (2021). Optimization of Computer Numerical Control Interpolation Parameters Using a Backpropagation Neural Network and Genetic Algorithm with Consideration of Corner Vibrations. Applied Sciences, 11(4), 1665. https://doi.org/10.3390/app11041665