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Abstract: This paper presents an optimization algorithm for tuning the interpolation parameters of
computer numerical control (CNC) controllers; it operates by considering multiple objective functions,
namely, contour errors, the machining time (MT), and vibrations. The position commands, position
errors, and vibration signals from 1024 experiments were considered in the designed trajectory. The
experimental data—the maximum contour error (MCoE), MT, and corner vibration (CVib)—were
analyzed to compute the performance index. A backpropagation neural network (BPNN) with
20 hidden layers was applied to predict the performance index. The correlation coefficients for the
predicted values and experimental results for the MCoE, MT, and CVib based on the validation data
were 0.9984, 0.9998, and 0.9354, respectively. The high correlation coefficients highlight the accuracy
of the model for designing the interpolation parameter. After the BPNN model was developed,
a genetic algorithm (GA) was adopted to determine the optimized parameters of the interpolation
under different weighting of the performance index. A weighted sum approach involving the
objective function was employed to determine the optimized interpolation parameters in the GA.
Thus, operators can judge the feasibility of the interpolation parameter for various weighting settings.
Finally, a mixed path was selected to verify the proposed algorithm.

Keywords: interpolator; data driven; optimization; vibration; contour error; machine performance

1. Introduction

In the milling process, the finished product requires a fine surface texture, high-
precision contour, and short machining time (MT). To achieve high-precision machining,
machine errors, such as static error, dynamic error, and process error, should be mini-
mized [1]. Generally, dynamic errors are caused by interpolation error, servo lag [2,3], and
vibrations [3,4]. Surface quality is typically determined through considerations of surface
roughness [5,6] and surface finish. Among the causes of machine errors, vibrations not
only affect dynamic errors and surface texture [7] but can also shorten the tool life [8].
Vibrations may be passively suppressed by machine tools with high damping capability.
However, for existing machine tools, path planning may play a critical role in reducing
contour errors and improving surface quality.

Computer numerical control (CNC) controller interpolation that considers the acceler-
ation/deceleration (Acc/Dec) planning of the machining trajectory has considerable effects
on the finished product. Therefore, adjusting Acc/Dec planning [9] not only improves
contouring accuracy and suppresses machine vibration, improving surface quality, but
may also reduce the overall MT. A specific instrument was developed to measure the
relative dynamic displacement between the tool and workpiece at the tool center point
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(TCP) such that the limits for the axis acceleration and jerk could be adjusted to improve
the contour accuracy [10]. In [11], the findings revealed that vibrations are mainly caused
by the acceleration and jerk of each axis, especially in the corners. An integrated dynamic
Acc/Dec method [12] was proposed to determine the corner velocity according to the
maximum dynamic contour error; the method entails considering the command and servo
dynamic errors. Related studies on predicting contour errors have typically employed
an analytical formulation that is generally based on the rigid body assumption. Another
approach to minimizing tracking errors and unwanted vibrations, an interpolation using
a linear combination of B-spline basis functions that employ the forward filter was pro-
posed [9]. Other methods have involved the use of a virtual cyber physical system (CPS) to
design the Acc/Dec parameters to suppress the unwanted vibrations. However, extensive
experiments are required to determine the parameters of a CPS system [13], making it
difficult to implement.

Other methods for developing CPS models are data-driven approaches that capture
data through experiments that employ various CNC controller parameters. An artificial
neural network (ANN) [14] and an ANN integrated with a genetic algorithm were ap-
plied to compute performance indices, such as the minimum surface roughness [6] and
tracking and contour errors [15]. In multi-objective optimization methods, weighted sum
approaches have been adopted to determine the optimal parameters. Search methodologies
such as a genetic algorithm [16] or particle swarm optimization [15] have been applied.
The adaptive neuro-fuzzy inference system was applied to predict the contour error and
tracking error [15]; however, vibration data at the TCP were not included in the data-driven
approach. To reduce the data capture time, various experimental designs, such as the
Taguchi experiment design (TED) [6,17] method and full factorial design (FFD) [18], have
been proposed. The designers claimed that a FFD could deliver a more accurate model
with fewer data. However, this paper reveals that many experiments must be conducted to
establish the ANN model for the CNC dynamic model. Thus, the data acquisition process
is not only time consuming but also labor intensive.

Currently, no paper has developed a CPS model that includes vibration effects using a
data-driven method. To predict the chatter vibration, the single frequency model (SFM)
and the modern collocation method Chebyshev polynomials (CCM) were applied, and
the mounting positions of accelerometers were indicated, in [19]. The finite element
approach [20,21] is generally applied to predict vibration behavior. However, because
of highly uncertain structural characteristics (e.g., stiffness), the damping ratio cannot
be identified accurately. Thus, the finite element approach is not feasible for predicting
the vibrations of the TCP accurately under various Acc/Dec conditions. A more suitable
approach for constructing a CPS model that can predict the contour error, MT, and TCP
vibrations simultaneously is using an ANN with a well-designed experimental process.
The design process in this paper involved the use of a data acquisition system that could
capture the data automatically without any operator. The ranges of the Acc/Dec parameters
were selected in accordance with the coarse machining to fine machining process. The
data were applied to construct an ANN model. Subsequently, the weighted sum and GA
approaches were adopted to determine the optimized Acc/Dec parameters when subject
to various cost functions of the contour error, MT, and vibration.

This paper is divided into five sections. Section 2 introduces the interpolation design.
Section 3 reveals the experimental process and the data analysis procedures for converting
the machine performance index. In Sections 4.1 and 4.2, the Z-score and a backpropagation
neural network (BPNN) for prediction are described. In Section 4.3, how a weighted
sum approach was employed to identify design optimization concerns to determine the
optimized parameters is described. Finally, a mixed path was selected to verify this paper’s
proposed algorithm.
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2. Introduction of Interpolator

An interpolator is used to generate the velocity profile and position commands by
interpreting a part program for each axis. For a linear interpolation (G01), Figure 1 reveals
the S-shaped velocity and Acc/Dec profiles [22,23] for a single block that consists of
constant speed periods (A), a constant slope for the Acc/Dec periods (B), and a constant
Acc/Dec period (C). Based on the S-shaped Acc/Dec control, the velocity profile can be
calculated according to the maximum velocity fmax, the maximum acceleration Amax, the
time constant of the S-shaped Acc/Dec T2, and the maximum jerk Jmax, as illustrated in
Figure 1.

Figure 1. S-shaped acceleration/deceleration (Acc/Dec) control for a signal block.

Generally, each axis has an allowable acceleration value that is determined according
to the driving capability of its servo motor. Compared with a single block, multiple blocks
of numerical control (NC) codes require one more parameter, which is given as the corner
velocity Vc [24] (Figure 2b). However, velocity discontinuity may occur when the velocity
profile is distributed to each axis, as indicated in Figure 2c,d. Clearly, a higher corner
velocity reduces the MT, but discontinuity can cause high acceleration and jerk for each
axis as well as a large vibration in the corner.

Figure 2. Corner velocity in velocity profile: (a) a sample NC code and multiple blocks (b) tangent
velocity profile (c) x-axis velocity profile (d) y-axis velocity profile.



Appl. Sci. 2021, 11, 1665 4 of 15

To reduce discontinuity, the Acc/Dec after interpolation (ADAI) [12] for each axis is
applied. The ADAI is a finite impulse response 25 filter with a time constant equal to Ta
that smooths the acceleration and jerk profile, as displayed in Figure 3. The application of
ADAI sacrifices contour accuracy and increases the MT. Table 1 reveals how the machine
performance varies as the interpolation parameters change. The tradeoff among various
parameter settings for the contour errors, MT, and corner vibration (CVib) motivated the
current researchers to propose an optimization method based on the constructed ANN
model.

Figure 3. (a) Velocity profiles in the Acc/Dec after interpolation (ADAI). (b) Velocity profiles out of
the ADAI [25].

Table 1. Trends in machine performance as the interpolation parameters change.

Para. Contour Errors Machining Time Corner Vibrations
Amax
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3. Experimental Procedure and Analysis Process
3.1. Experimental Designs

To establish the data-driven model, an automated acquisition system (AAS) was
developed. The AAS uses the Fuji Automatic Numerical Control (FANUC) Open CNC API
Specifications library (FOCAS) to capture the position command and position feedback.
The tracking error and contour error can be computed accordingly. The vibration signal
measured by a three-axis accelerometer (PCB 356A32 was made by PCB Piezotronics,
Depew, NY, USA) is captured using National Instrument (NI) devices (NI-9234). To ensure
the AAS could acquire data without operators, the library provided by NI ANSI C support
was used together with the FOCAS library. The human–machine interface (HMI) program
is presented in Figure 4. The program includes functions to connect the CNC controller
and NI device and to execute experiments sequentially by using a designed script file that
can change the values of five interpolator parameters and the total acquisition time. Here,
the sampling rate for the CNC was 1000 Hz, and that for the NI-9234 was 2048 Hz.
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Figure 4. Human–machine interface (HMI) of the automated acquisition system.

The experiments were conducted on a three-axis horizontal milling machine (Tongtai
HA-500II was manufactured by Tongtai Machine and Tool Co., LTD., R.O.C., Kaohsiung
City, Taiwan), with the three-axis accelerometer (PCB 356A32) installed on the spindle
housing, as shown in Figure 5.

Figure 5. Experimental machine and accelerometer setup.

To investigate the dynamic responses for setting various interpolation parameters, a
FFD was adopted in this study. The design of the interpolation parameters is presented
in Table 2; the values of the parameters were selected according to the various machining
conditions. Each parameter, namely, Amax, Ta, T2, Vc, and fmax, was set to four different
levels. In total, 1024 experiments were conducted for the FFD, and the designed parameter
ranges were applied to various machining processes.
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Table 2. Levels of each interpolation parameter.

Parameter Unit Level 1 Level 2 Level 3 Level 4
Amax mm/s2 900 1500 2100 2700

Ta ms 35 42 49 56
T2 ms 0 8 16 24
Vc mm/min 220 340 460 580

fmax mm/min 300 500 1000 1500

The 1024 experiments for the given trajectory discussed in Section 3 required 9 h
to complete. However, the AAS could command the machine to conduct the designed
trajectory and capture the data automatically without pressing the cycle-start button.
Compared with the TED, the FFD obtained an enhanced ANN model; this finding is
described in Section 4.2.

3.2. Preprocessing of the Data into Performance Index

In this study, the minimized cost function was selected to be the weighted sum of
different performance indices. The three performance indices were the maximum contour
error (MCoE), MT, and corner vibration (CVib). The captured data had to be converted into
performance indices before the training process commenced.

3.2.1. Analysis of Contour Error and MT

The contour error is defined as the short distance between the desired contour and
machining contour, as shown in Figure 6, where the desired contour is obtained from the
G-code and the machining contour is obtained from the position feedback. The rectangular
trajectory, as displayed in Figure 7, can be tested by tuning various interpolator parameters.
The maximum acceleration, ADAI, time constant of the S-shaped Acc/Dec corner velocity,
and maximum velocity all may have dramatic effects on corner errors, vibration, and MT.
Thus, the testing trajectory in Figure 7 was applied as the machining trajectory under
various interpolator parameters. For the trajectory consisting of a straight-line segment,
the contour error could be computed by simply applying the point-to-line formulation.
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Figure 7. Testing trajectory. (The corner 1, 2 and 3 were described in Section 3.2.1 and the period A,
B, C and D were described in Section 3.2.2.).

Figure 8 reveals the contour errors of the experiment, with the Amax, Ta, T2, Vc,
and fmax being given as 2700 mm/s2, 35 ms, 0 ms, 220 mm/min, and 1000 mm/min,
respectively. The maximum contour in corners 1, 2, and 3 was approximately 60 µm. The
other contour errors away from the corner were much less than that of the maximum
contour. On the basis of this observation, the MCoE was selected as the first performance
index. The MT is also a critical factor and thus was selected as the second performance
index. In this case, the MT equaled 7.361 s.
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1, 2 and 3 were marked as the corner 1, 2 and 3 in Figure 7, respectively.)

3.2.2. Analysis of CVibs

As shown in Figure 2, the discontinuity of the velocity profile in the corner can cause a
large acceleration and jerk. The vibrations in corner 3 in the x direction in Figure 9 validate
the observation. The parameters of Amax, Ta, T2, Vc, and fmax used in the experiment
were 2700 mm/s2, 35 ms, 0 ms, 580 mm/min, and 1500 mm/min, respectively. To further
analyze the vibration behavior in the corner, four periods were marked as A, B, C, and
D. As indicated in Figure 2, period A corresponds to the motion of the x axis moving in a
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state of constant velocity. Period C is the state right after the corner as shown in Figure 7.
Due to the discontinuity velocity profile as shown in Figure 2, excessive vibration might
occur as shown in Figure 9. Period D corresponds to the motion for the y axis moving at a
constant velocity. Because the vibration of period B corresponds to the designed Acc/Dec,
the residual vibration at period C could cause machining marks in the corner. The vibration
in period C was selected as the third performance index.
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Figure 10. Fast Fourier transform (FFT) for vibrations of periods A, C, and D in Figure 9.

To further observe the vibration behavior around the corner, the fast Fourier transform
(FFT) for the periods A, C, and D was calculated (Figure 10). Four major peaks were
observed at 30, 40, 116, and 426 Hz. The first natural frequency was revealed to be 30 Hz,
which affects the machining process more dramatically compared with the other modes.
Furthermore, the magnitude of the 30 Hz mode was highly dependent upon the interpolator
parameters. The analysis of 1024 experiments revealed that the 30 Hz vibration mode can
be effectively reduced by tuning the interpolation parameters, whereas the other frequency
modes were less susceptible to change. Therefore, the vibration magnitude of 30 Hz was
selected as the third performance index.



Appl. Sci. 2021, 11, 1665 9 of 15

4. Modeling and Optimization Concerns

The machine performance index is well known to be highly affected by Acc/Dec
planning. A data-driven model is presented in this section for predicting the machine
performance index. The MCoE and MT were computed from the command and position
feedback, and the CVib was computed from the accelerometer. The Z-score was applied to
normalize the performance index, and the BPNN was applied to establish the model and
used to evaluate the testing trajectory.

4.1. Z-Score (Standard Score)

Because each dimension of the performance index is different, the accuracy of the
trained model might be biased. To address this problem, a normalization and standardiza-
tion process is generally used in machine learning. The Z-score is used to convert the raw
data according to z = (x − µ)/σ, where µ and σ are the mean and standard deviation of the
population, respectively. For the testing and training data, the µ and σ of the MCoE were
46.08 and 21.17 µm, respectively. The µ and σ of the MT were 12.69 and 7.45 s, respectively.
The µ and σ of the CVib were 7.62 and 6.16 mm/s2, respectively.

4.2. BPNN Algorithm

A conventional BPNN algorithm [26], displayed in Figure 11, was applied to predict
the machine performance indices. Several methodologies, such as [16,18], were tested,
but the BPNN was the most accurate for predicting the information index and could be
applied later in the optimization process with less computational burden. The architecture
contained five inputs, three output elements, 20 hidden layers, and one output layer.
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The inputs were the interpolation parameters listed in Table 2, and the outputs were
the performance indices, namely, the MCoE, MT, and CVib. The training dataset was from
the 1024 experiments described in Section 3, and the validation dataset comprised 64 ran-
domly selected experiments and the parameter ranges in Table 2. Besides, 1024 experiments
were conducted for the training dataset; another 64 experiments were conducted for the
validation of the training model. The other four experiments were executed for testing the
optimization process. A total of 1092 experiments were conducted in the study. In Table 3,
the training and validation results for the root mean square error (RMSE) and maximum
error (ME) are listed to demonstrate the accuracy of the trained model.

In the validation dataset, the RMSE and ME of the MCoE were 1.0976 and 5.5356 µm,
respectively. The RMSE and ME of the MT were 0.1305 and 0.5847 s, respectively. The
RMSE error was approximately 1% when a mean value of MT µ equal to 12.69 s was
applied. Finally, the RMSE and ME of the CVib were 4.48 and 8.28 mm/s2, respectively.
The correlation coefficients of the predicted values and experimental results were calculated
using the Excel CORREL function. The equation for the correlation coefficient for a two
random variable array of X and Y is defined as

Correl(X, Y) =
∑n

i=1(x − x)(y − y)√
∑n

i=1(x − x)2 ∑n
i=1(y − y)2

(1)
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where x and y are the means of the data of x and y, respectively. The correlation coefficients
of the predicted values and experimental results for the MCoE, MT, and CVib based on
the validation data were 0.9984, 0.9998, and 0.9354, respectively. As indicated in the
introduction, the vibration of a machine tool is extremely difficult to predict using the finite
element method. The high correlation coefficients suggest the developed model is accurate
for designing the interpolation parameters.

Table 3. Training and validation results for the artificial neural network (ANN) model: the maximum
contour error (MCoE) and machining time (MT) and corner vibration (CVib).

MCoE MT CVib

RMSE of training 0.0587
(µm)

0.0006
(s)

0.38
(mm/s2)

RMSE of validation 1.0976
(µm)

0.1305
(s)

3.14
(mm/s2)

ME of training 4.9264
(µm)

0.2883
(s)

4.48
mm/s2)

ME of validation 5.5356
(µm)

0.5847
(s)

8.28
(mm/s2)

Experimental design is a crucial concern in developing data-driven models. The TED
has the advantage of requiring a relatively low number of experiments, which reduces
the data acquisition time. However, the results might not be as accurate as those gener-
ated through a FFD [27]. To compare the performance of the two experimental design
approaches, L16(45) arrays—including five factors and four levels—were used in the TED
in this study. Only 16 experiments were conducted with the training dataset. The RMSE
and ME of the MCoE were 19.33 and 40.47 µm, respectively. The RMSE and ME of the MT
were 2.1144 and 7.9993 s, respectively. The CVib was 13.52 and 26.12 mm/s2, respectively.
Thus, the accuracy of the TED-based model was much lower than that of the FFD. Although
the number of experiments needed in the FFD was much higher than that in the TED, the
AAS provided a convenient platform for conducting more experiments with less effort.

4.3. Design Optimization Concerns and Components of the Multi-Objective Function

After the BPNN model was developed, the next step was to define the cost function
for optimization. Here, the genetic algorithm (GA) was applied to search for the optimum
solution based on unconstrained functions. The GA, relying on biologically inspired
operators such as selection, crossover, and mutation to generate high-quality solutions, is
commonly used in nonlinear optimization problems. The GA provided the multi-objective
optimization solution with the given constraints on the interpolation parameters. Here,
a weighted sum approach 16 was adopted, and the objective function was given as

L = w1 × f 1 + w2 × f 2 + w3 × f 3 (2)

where f1, f2, and f3 represent the BPNN outputs, and w1, w2, and w3 are the weighting
functions, respectively. The objective function with constraints is listed in Table 4. Depend-
ing on the machining process, different weightings were selected; the results are listed in
Table 5. For example, if w1, w2, and w3 were set to (1, 0, 0), accuracy was the major priority.
The GA algorithm determined the optimization interpolation parameters with the lowest
acceleration Amax, feedrate fmax, and corner velocity Vc, and the largest time constants
Ta and T2 within the given constraints. For the weighting selected as (0, 1, 0), the major
priority was MT, and the corresponding results are given in Table 6. The machine time was
approximately 5 s, which was the shortest among the four cases. Generating noteworthy
results that had not been reported in the literature was the priority; thus, the vibration
for Case 3 was selected. In Case 3, the CVib was the lowest among the four cases, but
the MT was longer than that of Case 2. Neither the MCoE or MT, nor the CVib of Case 4
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achieved the highest performance among the four cases. Without the model, determining
the optimization parameters was impossible.

Table 4. Multi-objective function and constraints following the weighted sum approach.

Multi-Objective Function Constraints

L = w1 × f 1 + w2 × f 2 + w3 × f 3

Minimum L

900 ≤ Amax ≤ 2700
35 ≤ Ta ≤ 56
0 ≤ T2 ≤ 24

220 ≤ Vc ≤ 580
300 ≤ Vmax ≤ 1500

Table 5. Results for optimized interpolation parameters according to the optimized mode.

Case 1 2 3 4
(w1, w2, w3) (1, 0, 0) (0, 1, 0) (0, 0, 1) (0.5, 0.2, 0.5)

Amax
(mm/s2) 900 2079 1575 900

Ta
(ms) 35 42 55 35

T2
(ms) 23 0 6 23

Vc
(mm/min) 220 579 220 220

fmax
(mm/min) 300 1499 300 884

Table 6. Artificial neural network (ANN)-predicted and experimental results for MCoE, MT, and
CVib.

Case MCoE
(µm)

MT
(s)

CVib
(mm/s2)

1 Pred. 15.9 24.012 10.4
Exp. 17.1 24.085 14.1

Error * −1.2 −0.073 −3.7
2 Pred. 100.1 5.009 63.8

Exp. 99.7 4.867 69.7
Error * 0.4 0.142 −5.9

3 Pred. 24.5 24.029 5.0
Exp. 25.0 24.075 4.6

Error * −0.5 −0.046 0.4
4 Pred. 23.4 8.060 5.4

Exp. 23.8 8.299 9.0
Error * −0.4 −0.239 −3.6

Note*: The error was calculated between the predicted value of the experimental result.

The predicted and experimental results are listed in Table 6; these data were used to
validate the accuracy of the BPNN model. Notably, the MT accuracy for all the cases was
less than 3%, which is challenging to achieve without knowing the CNC kernel for the
FANUC controller.

4.4. Verification by Employing a Complex Path

To apply the developed model in real machining, a complex trajectory, illustrated in
Figure 12a, was tested. The trajectory, including the G01, G02, and corner errors for the
conjunction of each segment, is displayed in Figure 12b–e. The interpolation parameters
listed in Table 5 were used in the experiments. Clearly, contour errors generally occurred
in sharp corners. The contour errors for the smooth conjunctions between G01 and G02
and from G02 to G03 in the period K5–K7 were extremely small compared with those in
the period K2–K4. As expected, the MCoE for Case 1 at the peak of the period K2–K4 was
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the smallest, and the MCoE of Case 2 was the largest. The vibrations for Case 1 to Case
4 in the period K1 are revealed in Figure 13. Case 3 had the lowest vibration among the
four cases. To further illustrate the spectrum of the vibration, FFT was conducted on the
vibration signal when passing the corner; the results are presented in Figure 13b. Clearly,
the CVib of Case 2 was the largest among the four cases, and that of Case 3 achieved the
least vibration at the first resonance.
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5. Conclusions

This study proposed an optimization algorithm for tuning the CNC interpolation pa-
rameters by considering multiple objective functions such as contour errors, the machining
time, and corner vibrations. It is known that the five different parameters of Amax, Ta,
T2, Vc and fmax of the interpolator can influence the objective functions significantly. For
example, a higher level of acceleration will reduce the machining time and increase the
contour error and corner vibrations. However, no systematic approach has been adopted
to determine the optimal solutions under different machining processes. In this study,
1024 experiments were conducted, and the experimental data—the MCoE, MT, and CVib—
were captured automatically and analyzed to compute the performance index. A BPNN
with 20 hidden layers was applied to establish the relationship between the interpolation
parameter and performance index. The correlations between the predicted values and
experimental results for the MCoE, MT, and CVib were 0.9984, 0.9998, and 0.9354, respec-
tively. Then, the GA was adopted based on the BPNN model to determine the optimized
interpolation parameter. The experimental results validate the accuracy and efficiency of
the proposed algorithm. With the developed optimization methodology, operators can set
up the parameters systematically by selecting different weighting without a trial-and-error
process. The future work will be adding the surface roughness into the performance indices
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such that one will be able to determine the surface quality, machining time, and contour
errors simultaneously.

Author Contributions: H.-C.T., M.-S.T., C.-C.C. and C.-J.L. initiated and developed the concepts
related to this research work. H.-C.T. performed the collected data for the designed experiment
and analyzed the data. Both of them discussed the experimental results and developed the tuning
methodology. H.-C.T. wrote the paper draft under M.-S.T. and C.-C.C.’s guidance. All authors
discussed the results and commented on the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the Ministry of Science and Technology (MOST), R.O.C.,
under the contracts MOST 108-2634-F-194-001, MOST 108-2221-E-002-156-MY3, and MOST 108-2218-
E-002-071, and the Tongtai Machine & Tool Co., LTD., R.O.C.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the reviewers and editors for their suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lyu, D.; Liu, Q.; Liu, H.; Zhao, W. Dynamic error of CNC machine tools: A state-of-the-art review. J. Adv. Manuf. Technol. 2020,

106, 1869–1891. [CrossRef]
2. Cheng, M.Y.; Lee, C.C. Motion controller design for contour-following tasks based on real-time contour error estimation. IEEE Tran.

Ind. Electron. 2007, 54, 1686–1695. [CrossRef]
3. Sencer, B.; Ishizaki, K.; Shamoto, E. High speed cornering strategy with confined contour error and vibration suppression for

CNC machine tools. CIRP Ann. 2015, 64, 369–372. [CrossRef]
4. de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R.A.; Cabal-Yepez, E.; Dominguez-Gonzalez, A.

FPGA-based vibration analyzer for continuous CNC machinery monitoring with fused FFT-DWT signal processing. IEEE Tran.
Instrum. Meas. 2010, 59, 3184–3194. [CrossRef]

5. Sangwan, K.S.; Saxena, S.; Kant, G. Optimization of machining parameters to minimize surface roughness using integrated
ANN-GA approach. Procedia. Cirp. 2015, 29, 305–310. [CrossRef]

6. Zhang, J.Z.; Chen, J.C.; Kirby, E.D. Surface roughness optimization in an end-milling operation using the Taguchi design method.
J. Mater. Process. Technol. 2007, 184, 233–239. [CrossRef]

7. Benardos, P.G.; Vosniakos, G.C. Predicting surface roughness in machining: A review. J. Mach. Tools Manuf. 2003, 43, 833–844.
[CrossRef]

8. Alonso, F.J.; Salgado, D.R. Analysis of the structure of vibration signals for tool wear detection. Mech. Syst. Signal Proc. 2008, 22,
735–748. [CrossRef]

9. Okwudire, C.; Ramani, K.; Duan, M.A. trajectory optimization method for improved tracking of motion commands using CNC
machines that experience unwanted vibration. CIRP Ann. 2016, 65, 373–376. [CrossRef]

10. Bringmann, B.; Maglie, P. A method for direct evaluation of the dynamic 3D path accuracy of NC machine tools. CIRP Ann. 2009,
58, 343–346. [CrossRef]

11. Erkorkmaz, K.; Altintas, Y. High speed CNC system design. Part III: High speed tracking and contouring control of feed drives.
J. Mach. Tools Manuf. 2001, 41, 1637–1658. [CrossRef]

12. Tsai, M.S.; Huang, Y.C. A novel integrated dynamic acceleration/deceleration interpolation algorithm for a CNC controller. J. Adv.
Manuf. Technol. 2016, 87, 279–292. [CrossRef]

13. Altintas, Y.; Brecher, C.; Weck, M.; Witt, S. Virtual machine tool. CIRP Ann. 2005, 54, 115–138. [CrossRef]
14. Zain, A.M.; Haron, H.; Sharif, S. Prediction of surface roughness in the end milling machining using Artificial Neural Network.

Expert. Syst. Appl. 2010, 37, 1755–1768. [CrossRef]
15. Chiu, H.W.; Lee, C.H. Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach.

Adv. Eng. Softw. 2017, 114, 246–257. [CrossRef]
16. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006,

91, 992–1007. [CrossRef]
17. Tsai, J.T.; Chou, J.H.; Liu, T.K. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm.

IEEE Trans. Neural. Netw. 2006, 17, 69–80. [CrossRef] [PubMed]
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