Machine Learning for Design Optimization of Electromagnetic Devices: Recent Developments and Future Directions
Abstract
:1. Introduction
2. An Overview of Recent Advances in Design Optimization of Electromagnetic Devices
2.1. Deterministic Design Optimization
2.2. Design Optimization Models in The Presence of Uncertainties
2.3. Optimization Methods
2.3.1. Optimization Algorithms
2.3.2. Surrogate Models or Approximation Models
2.3.3. Multilevel and Space Reduction Optimization Strategies
2.3.4. System-Level Multidisciplinary Design Optimization
2.3.5. Topology Optimization
2.3.6. Fuzzy Optimization
3. Machine Learning for the Design Optimization of Electromagnetic Devices
3.1. Machine Learning for Performance Prediction of Electromagnetic Devices
3.2. Machine Learning for Optimization of Electromagnetic Devices
4. Future Directions
4.1. DL for Field Estimation or Multiphysics Analysis
4.2. Machine Learning for System-Level Design Optimization of Electrical Drive Systems
4.3. Machine Learning for Reliability Improvement of Electromagnetic Devices
4.4. Data-Driven Design Optimization Based on Cloud Services
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammed, O.A.; Lowther, D.A.; Lean, M.H.; Alhalabi, B. On the creation of a generalized design optimization environment for electromagnetic devices. IEEE Trans. Magn. 2001, 37, 3562–3565. [Google Scholar] [CrossRef]
- Sarlioglu, B.; Morris, C.T. More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft. IEEE Trans. Transp. Electrif. 2015, 1, 54–64. [Google Scholar] [CrossRef]
- Khan, A.; Lowther, D.A. Machine Learning applied to the Design and Analysis of Low Frequency Electromagnetic Devices. In Proceedings of the 2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2020; pp. 1–4. [Google Scholar]
- Duan, Y.; Ionel, D.M. A Review of Recent Developments in Electrical Machine Design Optimization Methods With a Permanent-Magnet Synchronous Motor Benchmark Study. IEEE Trans. Ind. Appl. 2013, 49, 1268–1275. [Google Scholar] [CrossRef]
- Bramerdorfer, G.; Tapia, J.A.; Pyrhönen, J.J.; Cavagnino, A. Modern Electrical Machine Design Optimization: Techniques, Trends, and Best Practices. IEEE Trans. Ind. Electron. 2018, 65, 7672–7684. [Google Scholar] [CrossRef]
- Lei, G.; Zhu, J.; Guo, Y. Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Hoorfar, A. Evolutionary Programming in Electromagnetic Optimization: A Review. IEEE Trans. Antennas Propag. 2007, 55, 523–537. [Google Scholar] [CrossRef]
- Du, G.; Huang, N.; Zhao, Y.; Lei, G.; Zhu, J. Comprehensive Sensitivity Analysis and Multiphysics Optimization of the Rotor for a High Speed Permanent Magnet Machine. IEEE Trans. Energy Convers. 2020. [Google Scholar] [CrossRef]
- Koronides, A.; Krasopoulos, C.; Tsiakos, D.; Pechlivanidou, M.S.; Kladas, A. Particular Coupled Electromagnetic, Thermal, Mechanical Design of High-Speed Permanent-Magnet Motor. IEEE Trans. Magn. 2020, 56, 1–5. [Google Scholar] [CrossRef]
- Xiao, S.; Li, Y.; Rotaru, M.; Sykulski, J.K. Six Sigma Quality Approach to Robust Optimization. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Cho, H.; Yeon, J.; Koh, C. A New Reliability Analysis Algorithm with Insufficient Uncertainty Data for Optimal Robust Design of Electromagnetic Devices. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Ho, S.L.; Yang, S.; Bai, Y.; Li, Y. A Wind Driven Optimization-Based Methodology for Robust Optimizations of Electromagnetic Devices under Interval Uncertainty. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Bramerdorfer, G.; Lei, G.; Cavagnino, A.; Zhang, Y.; Sykulski, J.; Lowther, D.A. More Robust and Reliable Optimized Energy Conversion Facilitated through Electric Machines, Power Electronics and Drives, and Their Control: State-of-the-Art and Trends. IEEE Trans. Energy Convers. 2020, 35, 1997–2012. [Google Scholar] [CrossRef]
- Lei, G.; Zhu, J.; Guo, Y.; Liu, C.; Ma, B. A Review of Design Optimization Methods for Electrical Machines. Energies 2017, 10, 1962. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Lei, G.; Zhu, J.; Guo, Y.; Liu, C. Application-Oriented Robust Design Optimization Method for Batch Production of Permanent-Magnet Motors. IEEE Trans. Ind. Electron. 2018, 65, 1728–1739. [Google Scholar] [CrossRef]
- Soares, G.L.; Adriano, R.L.S.; Maia, C.A.; Jaulin, L.; Vasconcelos, J.A. Robust Multi-Objective TEAM 22 Problem: A Case Study of Uncertainties in Design Optimization. IEEE Trans. Magn. 2009, 45, 1028–1031. [Google Scholar] [CrossRef]
- Lebensztajn, L.; Coulomb, J. TEAM workshop problem 25: A multi-objective analysis. IEEE Trans. Magn. 2004, 40, 1402–1405. [Google Scholar] [CrossRef]
- Seo, M.; Ryu, N.; Min, S. Sensitivity Analysis for Multi-Objective Optimization of the Benchmark TEAM Problem. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Ali, M.H.; Wu, B.; Dougal, R.A. An Overview of SMES Applications in Power and Energy Systems. IEEE Trans. Sustain. Energy 2010, 1, 38–47. [Google Scholar] [CrossRef]
- Rahman, O.; Muttaqi, K.M.; Sutanto, D. High Temperature Superconducting Devices and Renewable Energy Resources in Future Power Grids: A Case Study. IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [Google Scholar] [CrossRef]
- Lei, G.; Liu, C.; Jafari, M.; Zhu, J.; Guo, Y. Multilevel Robust Design Optimization of a Superconducting Magnetic Energy Storage Based on a Benchmark Study. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Alotto, P.; Baumgartner, U.; Freschi, F.; Jaindl, M.; Kostinger, A.; Magele, C.; Renhart, W.; Repetto, M. SMES Optimization Benchmark Extended: Introducing Pareto Optimal Solutions into TEAM22. IEEE Trans. Magn. 2008, 44, 1066–1069. [Google Scholar] [CrossRef]
- Guimaraes, F.G.; Campelo, F.; Saldanha, R.R.; Igarashi, H.; Takahashi, R.H.C.; Ramirez, J.A. A multi-objective proposal for the TEAM benchmark problem 22. IEEE Trans. Magn. 2006, 42, 1471–1474. [Google Scholar] [CrossRef]
- Yang, S.; Yang, J.; Bai, Y.; Ni, G. A New Methodology for Robust Optimizations of Optimal Design Problems Under Interval Uncertainty. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Yang, W.; Ho, S.L.; Yang, S. An Efficient Direct Search Methodology for Robust Optimization of Electromagnetic Devices. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Sarker, P.; Islam, M.; Guo, Y.; Zhu, J.; Lu, H. State-of-the-Art Technologies for Development of High Frequency Transformers with Advanced Magnetic Materials. IEEE Trans. Appl. Supercond. 2019, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, Y.; Zhu, J.; Guo, Y.; Lei, G.; Liu, C. Calculation of Capacitance in High-Frequency Transformer Windings. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Jafari, M.; Malekjamshidi, Z.; Lei, G.; Wang, T.; Platt, G.; Zhu, J. Design and Implementation of an Amorphous High-Frequency Transformer Coupling Multiple Converters in a Smart Microgrid. IEEE Trans. Ind. Electron. 2017, 64, 1028–1037. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Sun, K.; Lu, S.; Cao, G.; Li, Y.; Ha, J.I. High-Precision Simulation for Structure and Efficiency Optimization of High-Power High-Frequency Transformer. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 3524–3531. [Google Scholar]
- Zhang, K.; Chen, W.; Cao, X.; Song, Z.; Qiao, G.; Sun, L. Optimization Design of High-Power High-Frequency Transformer Based on Multi-Objective Genetic Algorithm. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–5. [Google Scholar]
- Islam, M.R.; Lei, G.; Guo, Y.; Zhu, J. Optimal Design of High-Frequency Magnetic Links for Power Converters Used in Grid-Connected Renewable Energy Systems. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Bastiaens, K.; Krop, D.C.J.; Jumayev, S.; Lomonova, E.A. Optimal Design and Comparison of High-Frequency Resonant and Non-Resonant Rotary Transformers. Energies 2020, 13, 929. [Google Scholar] [CrossRef] [Green Version]
- Chau, K.T.; Chan, C.C.; Liu, C. Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2246–2257. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.Q.; Howe, D. Electrical Machines and Drives for Electric, Hybrid, and Fuel Cell Vehicles. Proc. IEEE 2007, 95, 746–765. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Lei, G.; Guo, Y.; Zhu, J. Multi-Objective Design Optimization of an IPMSM Based on Multilevel Strategy. IEEE Trans. Ind. Electron. 2021, 68, 139–148. [Google Scholar] [CrossRef]
- Cho, S.; Jung, K.; Choi, J. Design Optimization of Interior Permanent Magnet Synchronous Motor for Electric Compressors of Air-Conditioning Systems Mounted on EVs and HEVs. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Lim, D.; Yi, K.; Jung, S.; Jung, H.; Ro, J. Optimal Design of an Interior Permanent Magnet Synchronous Motor by Using a New Surrogate-Assisted Multi-Objective Optimization. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Cai, Y.; Lei, G.; Guo, Y.; Zhu, J. Driving-Cycle-Oriented Design Optimization of a Permanent Magnet Hub Motor Drive System for a Four-Wheel-Drive Electric Vehicle. IEEE Trans. Transp. Electrif. 2020, 6, 1115–1125. [Google Scholar] [CrossRef]
- Sun, X.; Hu, C.; Lei, G.; Guo, Y.; Zhu, J. State Feedback Control for a PM Hub Motor Based on Gray Wolf Optimization Algorithm. IEEE Trans. Power Electron. 2020, 35, 1136–1146. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Lei, G.; Guo, Y.; Zhu, J. Analysis and Design Optimization of a Permanent Magnet Synchronous Motor for a Campus Patrol Electric Vehicle. IEEE Trans. Veh. Technol. 2019, 68, 10535–10544. [Google Scholar] [CrossRef]
- Wu, D.; Xiang, Z.; Zhu, X.; Quan, L.; Jiang, M.; Liu, Y. Optimization Design of Power Factor for an In-Wheel Vernier PM Machine from Perspective of Air-gap Harmonic Modulation. IEEE Trans. Ind. Electron. 2020. [Google Scholar] [CrossRef]
- Coenen, I.; Giet, M.v.d.; Hameyer, K. Manufacturing Tolerances: Estimation and Prediction of Cogging Torque Influenced by Magnetization Faults. IEEE Trans. Magn. 2012, 48, 1932–1936. [Google Scholar] [CrossRef]
- Khan, M.A.; Husain, I.; Islam, M.R.; Klass, J.T. Design of Experiments to Address Manufacturing Tolerances and Process Variations Influencing Cogging Torque and Back EMF in the Mass Production of the Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Appl. 2014, 50, 346–355. [Google Scholar] [CrossRef]
- Simón-Sempere, V.; Burgos-Payán, M.; Cerquides-Bueno, J. Influence of Manufacturing Tolerances on the Electromotive Force in Permanent-Magnet Motors. IEEE Trans. Magn. 2013, 49, 5522–5532. [Google Scholar] [CrossRef]
- Bramerdorfer, G. Effect of the Manufacturing Impact on the Optimal Electric Machine Design and Performance. IEEE Trans. Energy Convers. 2020, 35, 1935–1943. [Google Scholar] [CrossRef]
- Bramerdorfer, G. Tolerance Design Optimization: Classification, Modeling and Evaluation, and Example. IEEE Trans. Magn. 2019. [Google Scholar] [CrossRef]
- Lei, G.; Bramerdorfer, G.; Liu, C.; Guo, Y.; Zhu, J. Robust Design Optimization of Electrical Machines: A Comparative Study and Space Reduction Strategy. IEEE Trans. Energy Convers. 2020. [Google Scholar] [CrossRef]
- Lei, G.; Bramerdorfer, G.; Ma, B.; Guo, Y.; Zhu, J. Robust Design Optimization of Electrical Machines: Multi-objective Approach. IEEE Trans. Energy Convers. 2020. [Google Scholar] [CrossRef]
- Ma, B.; Zheng, J.; Zhu, J.; Wu, J.; Lei, G.; Guo, Y. Robust Design Optimization of Electrical Machines Considering Hybrid Random and Interval Uncertainties. IEEE Trans. Energy Convers. 2020, 35, 1815–1824. [Google Scholar] [CrossRef]
- Ren, Z.; Pham, M.; Koh, C.S. Robust Global Optimization of Electromagnetic Devices With Uncertain Design Parameters: Comparison of the Worst Case Optimization Methods and Multi-objective Optimization Approach Using Gradient Index. IEEE Trans. Magn. 2013, 49, 851–859. [Google Scholar] [CrossRef]
- Ren, Z.; Pham, M.; Song, M.; Kim, D.; Koh, C.S. A Robust Global Optimization Algorithm of Electromagnetic Devices Utilizing Gradient Index and Multi-Objective Optimization Method. IEEE Trans. Magn. 2011, 47, 1254–1257. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, D.; Koh, C. New Reliability-Based Robust Design Optimization Algorithms for Electromagnetic Devices Utilizing Worst Case Scenario Approximation. IEEE Trans. Magn. 2013, 49, 2137–2140. [Google Scholar] [CrossRef]
- Ren, Z.; Park, C.; Koh, C. Numerically Efficient Algorithm for Reliability-Based Robust Optimal Design of TEAM Problem 22. IEEE Trans. Magn. 2014, 50, 661–664. [Google Scholar] [CrossRef]
- Song, J.; Dong, F.; Zhao, J.; Lu, S.; Dou, S.; Wang, H. Optimal design of permanent magnet linear synchronous motors based on Taguchi method. IET Electr. Power Appl. 2017, 11, 41–48. [Google Scholar] [CrossRef]
- Credo, A.; Fabri, G.; Villani, M.; Popescu, M. A Robust Design Methodology for Synchronous Reluctance Motors. IEEE Trans. Energy Convers. 2020, 35, 2095–2105. [Google Scholar] [CrossRef]
- Lei, G.; Liu, C.; Li, Y.; Chen, D.; Guo, Y.; Zhu, J. Robust Design Optimization of a High-Temperature Superconducting Linear Synchronous Motor Based on Taguchi Method. IEEE Trans. Appl. Supercond. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, J.; Song, J.; Zhao, J.; Yao, Z. Robust Design Optimization of Permanent Magnet Linear Synchronous Motor Based on Quantified Constraint Satisfaction Problem. IEEE Trans. Energy Convers. 2020, 35, 2013–2024. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, J.; Zhao, J.; Song, J.; Chen, J.; Zheng, Z. Robust Optimization of PMLSM Based on a New Filled Function Algorithm with a Sigma Level Stability Convergence Criterion. IEEE Trans. Ind. Inform. 2020. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, J.; Xiang, Z.; Jiang, M.; Zheng, S.; Quan, L. Robust-Oriented Optimization Design for Permanent Magnet Motors Considering Parameter Fluctuation. IEEE Trans. Energy Convers. 2020, 35, 2066–2075. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.G.; Kim, J.M.; Lee, T.H.; Lim, M.S. Robust Design Optimization of Surface-Mounted Permanent Magnet Synchronous Motor Using Uncertainty Characterization by Bootstrap Method. IEEE Trans. Energy Convers. 2020, 35, 2056–2065. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, N.; Ryu, H.; Jung, H.; Woo, D. Robust Optimization Approach Applied to Permanent Magnet Synchronous Motor. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Lei, G.; Zhu, J.; Guo, Y.; Shao, K.; Xu, W. Multiobjective Sequential Design Optimization of PM-SMC Motors for Six Sigma Quality Manufacturing. IEEE Trans. Magn. 2014, 50, 717–720. [Google Scholar] [CrossRef]
- Lei, G.; Zhu, J.G.; Guo, Y.G.; Hu, J.F.; Xu, W.; Shao, K.R. Robust Design Optimization of PM-SMC Motors for Six Sigma Quality Manufacturing. IEEE Trans. Magn. 2013, 49, 3953–3956. [Google Scholar] [CrossRef]
- Xu, L.; Wu, W.; Zhao, W.; Liu, G.; Niu, S. Robust Design and Optimization for a Permanent Magnet Vernier Machine With Hybrid Stator. IEEE Trans. Energy Convers. 2020, 35, 2086–2094. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Zhu, J.; Chen, Z.; Huang, S. Multi-Objective Robust Optimization of a Dual-Flux-Modulator Magnetic Geared Machine with Hybrid Uncertainties. IEEE Trans. Energy Convers. 2020, 35, 2106–2115. [Google Scholar] [CrossRef]
- Guest Editorial: Robust Design and Analysis of Electric Machines and Drives. IEEE Trans. Energy Convers. 2020, 35, 1995–1996. [CrossRef]
- Barba, P.D.; Dughiero, F.; Forzan, M.; Lowther, D.A.; Mognaschi, M.E.; Sieni, E.; Sykulski, J.K. A Benchmark TEAM Problem for Multi-Objective Pareto Optimization in Magnetics: The Time-Harmonic Regime. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Barba, P.D.; Mognaschi, M.E.; Lowther, D.A.; Sykulski, J.K. A Benchmark TEAM Problem for Multi-Objective Pareto Optimization of Electromagnetic Devices. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Diao, K.; Sun, X.; Lei, G.; Guo, Y.; Zhu, J. Multimode Optimization of Switched Reluctance Machines in Hybrid Electric Vehicles. IEEE Trans. Energy Convers. 2020. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, D.; Mo, L.; Chen, Y.; Quan, L. Multiobjective Optimization Design of a Double-Rotor Flux-Switching Permanent Magnet Machine Considering Multimode Operation. IEEE Trans. Ind. Electron. 2019, 66, 641–653. [Google Scholar] [CrossRef]
- Zhu, X.; Xiang, Z.; Quan, L.; Wu, W.; Du, Y. Multimode Optimization Design Methodology for a Flux- Controllable Stator Permanent Magnet Memory Motor Considering Driving Cycles. IEEE Trans. Ind. Electron. 2018, 65, 5353–5366. [Google Scholar] [CrossRef]
- Bhagubai, P.P.; Sarrico, J.G.; Fernandes, J.F.; Costa Branco, P.J. Design, Multi-Objective Optimization, and Prototyping of a 20 kW 8000 rpm Permanent Magnet Synchronous Motor for a Competition Electric Vehicle. Energies 2020, 13, 2465. [Google Scholar] [CrossRef]
- Wu, T.; Feng, Z.; Wu, C.; Lei, G.; Guo, Y.; Zhu, J.; Wang, X. Multiobjective Optimization of a Tubular Coreless LPMSM Based on Adaptive Multiobjective Black Hole Algorithm. IEEE Trans. Ind. Electron. 2020, 67, 3901–3910. [Google Scholar] [CrossRef]
- Ho, S.L.; Yang, J.; Yang, S.; Bai, Y. A Real Coded Vector Population-Based Incremental Learning Algorithm for Multi-Objective Optimizations of Electromagnetic Devices. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Ho, S.L.; Yang, S. A Wind Driven Optimization Algorithm for Global Optimization of Electromagnetic Devices. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Knypiński, Ł.; Pawełoszek, K.; Le Menach, Y. Optimization of Low-Power Line-Start PM Motor Using Gray Wolf Metaheuristic Algorithm. Energies 2020, 13, 1186. [Google Scholar]
- Baatar, N.; Jeong, K.; Koh, C. Adaptive Parameter Controlling Non-Dominated Ranking Differential Evolution for Multi-Objective Optimization of Electromagnetic Problems. IEEE Trans. Magn. 2014, 50, 709–712. [Google Scholar] [CrossRef]
- Baek, S.-W.; Lee, S.W. Design Optimization and Experimental Verification of Permanent Magnet Synchronous Motor Used in Electric Compressors in Electric Vehicles. Appl. Sci. 2020, 10, 3235. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, J.; Song, J.; Feng, Y.; He, Z. Optimal Design of Permanent Magnet Linear Synchronous Motors at Multispeed Based on Particle Swarm Optimization Combined With SN Ratio Method. IEEE Trans. Energy Convers. 2018, 33, 1943–1954. [Google Scholar] [CrossRef]
- Rehman, O.U.; Yang, S.; Khan, S.; Rehman, S.U. A Quantum Particle Swarm Optimizer with Enhanced Strategy for Global Optimization of Electromagnetic Devices. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, S. Design and Optimization of a Novel Slot-PM-Assisted Variable Flux Reluctance Generator for Hybrid Electric Vehicles. IEEE Trans. Energy Convers. 2018, 33, 2102–2111. [Google Scholar] [CrossRef]
- Lin, Q.; Niu, S.; Fu, W.N. Design and Optimization of a Dual-Permanent-Magnet Vernier Machine With a Novel Optimization Model. IEEE Trans. Magn. 2020, 56, 1–5. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, S. Design and Optimization of a New Magnetic-Geared Pole-Changing Hybrid Excitation Machine. IEEE Trans. Ind. Electron. 2017, 64, 9943–9952. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, S.; Yang, L. Design Optimization and Comparative Study of Novel Dual-PM Excited Machines. IEEE Trans. Ind. Electron. 2017, 64, 9924–9933. [Google Scholar] [CrossRef]
- Yazdani-Asrami, M.; Alipour, M.; Gholamian, S.A. Optimal ECO-Design of Permanent Magnet Brushless DC Motor Using Modified Tabu Search Optimizer and Finite Element Analysis. J. Magn. 2015, 20, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Di Noia, L.P.; Piegari, L.; Rizzo, R. Optimization Methodology of PMSM Cooled by External Convection in Aircraft Propulsion. Energies 2020, 13, 3975. [Google Scholar] [CrossRef]
- Jabr, R.A. Application of geometric programming to transformer design. IEEE Trans. Magn. 2005, 41, 4261–4269. [Google Scholar] [CrossRef]
- Khazaei, S.; Tahani, A.; Yazdani-Asrami, M.; Gholamian, S.A. Optimal Design of Three Phase Surface Mounted Permanent Magnet Synchronous Motor by Particle Swarm optimization and Bees Algorithm for Minimum Volume and Maximum Torque. J. Adv. Comput. Res. 2015, 6, 83–98. [Google Scholar]
- Bocii, L.S.; Di Noia, L.P.; Rizzo, R. Optimization of the Energy Storage of Series-Hybrid Propelled Aircraft by Means of Integer Differential Evolution. Aerospace 2019, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Hoburg, W.; Abbeel, P. Geometric programming for aircraft design optimization. AIAA J. 2014, 52, 2414–2426. [Google Scholar] [CrossRef] [Green Version]
- Yazdani-Asrami, M.; Taghipour-Gorjikolaie, M.; Song, W.; Zhang, M.; Yuan, W. Prediction of Nonsinusoidal AC Loss of Superconducting Tapes Using Artificial Intelligence-Based Models. IEEE Access 2020, 8, 207287–207297. [Google Scholar] [CrossRef]
- Cvetkovski, G.; Petkovska, L.; Gair, S. Specific power as objective function in GA optimal design of permanent magnet disc motor. Compel Int. J. Comput. Math. Electr. Electron. Eng. 2010, 29, 964–973. [Google Scholar] [CrossRef]
- Bramerdorfer, G.; Zăvoianu, A. Surrogate-Based Multi-Objective Optimization of Electrical Machine Designs Facilitating Tolerance Analysis. IEEE Trans. Magn. 2017, 53, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Lowther, D.A. Selection of approximation models for electromagnetic device optimization. IEEE Trans. Magn. 2006, 42, 1227–1230. [Google Scholar] [CrossRef]
- Zhu, X.; Yan, B.; Chen, L.; Zhang, R.; Quan, L.; Mo, L. Multi-Objective Optimization Design of a Magnetic Planetary Geared Permanent Magnet Brushless Machine by Combined Design of Experiments and Response Surface Methods. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Lebensztajn, L.; Marretto, C.A.R.; Costa, M.C.; Coulomb, J. Kriging: A useful tool for electromagnetic device optimization. IEEE Trans. Magn. 2004, 40, 1196–1199. [Google Scholar] [CrossRef]
- Lei, G.; Liu, C.; Zhu, J.; Guo, Y. Techniques for Multilevel Design Optimization of Permanent Magnet Motors. IEEE Trans. Energy Convers. 2015, 30, 1574–1584. [Google Scholar] [CrossRef]
- Lei, G.; Shao, K.R.; Guo, Y.; Zhu, J.; Lavers, J.D. Sequential Optimization Method for the Design of Electromagnetic Device. IEEE Trans. Magn. 2008, 44, 3217–3220. [Google Scholar] [CrossRef] [Green Version]
- Lei, G.; Shao, K.R.; Guo, Y.; Zhu, J.; Lavers, J.D. Improved Sequential Optimization Method for High Dimensional Electromagnetic Device Optimization. IEEE Trans. Magn. 2009, 45, 3993–3996. [Google Scholar] [CrossRef]
- Lei, G.; Yang, G.Y.; Shao, K.R.; Guo, Y.; Zhu, J.; Lavers, J.D. Electromagnetic Device Design Based on RBF Models and Two New Sequential Optimization Strategies. IEEE Trans. Magn. 2010, 46, 3181–3184. [Google Scholar] [CrossRef]
- Zhu, X.; Shu, Z.; Quan, L.; Xiang, Z.; Pan, X. Multi-Objective Optimization of an Outer-Rotor V-Shaped Permanent Magnet Flux Switching Motor Based on Multilevel Design Method. IEEE Trans. Magn. 2016, 52, 1–8. [Google Scholar] [CrossRef]
- Lei, G.; Guo, Y.G.; Zhu, J.G.; Wang, T.S.; Chen, X.M.; Shao, K.R. System Level Six Sigma Robust Optimization of a Drive System With PM Transverse Flux Machine. IEEE Trans. Magn. 2012, 48, 923–926. [Google Scholar] [CrossRef]
- Lei, G.; Liu, C.; Guo, Y.; Zhu, J. Multidisciplinary Design Analysis and Optimization of a PM Transverse Flux Machine With Soft Magnetic Composite Core. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Lei, G.; Liu, C.; Guo, Y.; Zhu, J. Robust Multidisciplinary Design Optimization of PM Machines With Soft Magnetic Composite Cores for Batch Production. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Lei, G.; Wang, T.; Guo, Y.; Zhu, J.; Wang, S. System-Level Design Optimization Methods for Electrical Drive Systems: Deterministic Approach. IEEE Trans. Ind. Electron. 2014, 61, 6591–6602. [Google Scholar] [CrossRef]
- Lei, G.; Wang, T.; Zhu, J.; Guo, Y. Robust multi-objective and multidisciplinary design optimization of electrical drive systems. CES Trans. Electr. Mach. Syst. 2018, 2, 409–416. [Google Scholar] [CrossRef]
- Lei, G.; Wang, T.; Zhu, J.; Guo, Y.; Wang, S. System-Level Design Optimization Method for Electrical Drive Systems—Robust Approach. IEEE Trans. Ind. Electron. 2015, 62, 4702–4713. [Google Scholar] [CrossRef]
- Lei, G.; Xu, W.; Hu, J.; Zhu, J.; Guo, Y.; Shao, K. Multilevel Design Optimization of a FSPMM Drive System by Using Sequential Subspace Optimization Method. IEEE Trans. Magn. 2014, 50, 685–688. [Google Scholar] [CrossRef]
- Diao, K.; Sun, X.; Lei, G.; Bramerdorfer, G.; Guo, Y.; Zhu, J. System-level Robust Design Optimization of a Switched Reluctance Motor Drive System Considering Multiple Driving Cycles. IEEE Trans. Energy Convers. 2020. [Google Scholar] [CrossRef]
- Diao, K.; Sun, X.; Lei, G.; Guo, Y.; Zhu, J. Multiobjective System Level Optimization Method for Switched Reluctance Motor Drive Systems Using Finite-Element Model. IEEE Trans. Ind. Electron. 2020, 67, 10055–10064. [Google Scholar] [CrossRef]
- Krasopoulos, C.T.; Beniakar, M.E.; Kladas, A.G. Robust Optimization of High-Speed PM Motor Design. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Ma, B.; Zheng, J.; Lei, G.; Zhu, J.; Jin, P.; Guo, Y. Topology Optimization of Ferromagnetic Components in Electrical Machines. IEEE Trans. Energy Convers. 2020, 35, 786–798. [Google Scholar] [CrossRef]
- Ho, S.L.; Yang, S.; Bai, Y. A Fast Methodology for Topology Optimizations of Electromagnetic Devices. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Ren, Z. A Methodology Based on Quantum Evolutionary Algorithm for Topology Optimization of Electromagnetic Devices. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Yang, W.; Ho, S.L.; Fu, W. A Modified Shuffled Frog Leaping Algorithm for the Topology Optimization of Electromagnet Devices. Appl. Sci. 2020, 10, 6186. [Google Scholar] [CrossRef]
- Lolova, I.; Barta, J.; Bramerdorfer, G.; Silber, S. Topology optimization of line-start synchronous reluctance machine. In Proceedings of the 2020 19th International Conference on Mechatronics Mechatronika (ME), Prague, Czech Republic, 2–4 December 2020; pp. 1–7. [Google Scholar]
- Liu, B. Theory and Practice of Uncertain Programming, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Liu, B. Uncertain set theory and uncertain inference rule with application to uncertain control. J. Uncertain Syst. 2010, 4, 83–98. [Google Scholar]
- Guimaraes, F.G.; Campelo, F.; Saldanha, R.R.; Ramirez, J.A. A hybrid methodology for fuzzy optimization of electromagnetic devices. IEEE Trans. Magn. 2005, 41, 1744–1747. [Google Scholar] [CrossRef]
- Changhwan, C.; Daeok, L.; Kyihwan, P. Fuzzy design of a switched reluctance motor based on the torque profile optimization. IEEE Trans. Magn. 2000, 36, 3548–3550. [Google Scholar] [CrossRef]
- Chen, H.; Zhan, Y.; Nie, R. Multiobjective Optimization Design of Single-Phase Tubular Switched Reluctance Linear Launcher. IEEE Trans. Plasma Sci. 2019, 47, 2431–2437. [Google Scholar] [CrossRef]
- Chen, H.; Zhan, Y.; Nie, R.; Zhao, S. Multiobjective Optimization Design of Tubular Permanent Magnet Linear Launcher. IEEE Trans. Plasma Sci. 2019, 47, 2486–2492. [Google Scholar] [CrossRef]
- Guo, Y.; Si, J.; Gao, C.; Feng, H.; Gan, C. Improved Fuzzy-Based Taguchi Method for Multi-Objective Optimization of Direct-Drive Permanent Magnet Synchronous Motors. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Hwang, C.; Chang, C.; Liu, C. A Fuzzy-Based Taguchi Method for Multiobjective Design of PM Motors. IEEE Trans. Magn. 2013, 49, 2153–2156. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, X.; Cai, Y.; Yang, Z. Robust Design Optimization of a Five-Phase PM Hub Motor for Fault-Tolerant Operation Based on Taguchi Method. IEEE Trans. Energy Convers. 2020, 35, 2036–2044. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Zhu, J. Multi-objective Design Optimization of an IPMSM for EVs Based on Fuzzy Method and Sequential Taguchi Method. IEEE Trans. Ind. Electron. 2020. [Google Scholar] [CrossRef]
- Dong, F.; Song, J.; Zhao, J.; Zhao, J. Multi-objective design optimization for PMSLM by FITM. IET Electr. Power Appl. 2018, 12, 188–194. [Google Scholar] [CrossRef]
- Liu, C.; Lei, G.; Ma, B.; Guo, Y.; Zhu, J. Robust Design of a Low-Cost Permanent Magnet Motor with Soft Magnetic Composite Cores Considering the Manufacturing Process and Tolerances. Energies 2018, 11, 2025. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Ghorbanian, V.; Lowther, D. Deep Learning for Magnetic Field Estimation. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Kirchgässner, W.; Wallscheid, O.; Böcker, J. Deep Residual Convolutional and Recurrent Neural Networks for Temperature Estimation in Permanent Magnet Synchronous Motors. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 12–15 May 2019; pp. 1439–1446. [Google Scholar]
- Kirchgassner, W.; Wallscheid, O.; Boecker, J. Estimating Electric Motor Temperatures with Deep Residual Machine Learning. IEEE Trans. Power Electron. 2020. [Google Scholar] [CrossRef]
- Khan, A.; Mohammadi, M.H.; Ghorbanian, V.; Lowther, D. Efficiency Map Prediction of Motor Drives Using Deep Learning. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Sun, X.; Wu, J.; Lei, G.; Cai, Y.; Chen, X.; Guo, Y. Torque Modeling of a Segmented-Rotor SRM Using Maximum-Correntropy-Criterion-Based LSSVR for Torque Calculation of EVs. IEEE J. Emerg. Sel. Top. Power Electron. 2020. [Google Scholar] [CrossRef]
- Wu, J.; Sun, X.; Zhu, J. Accurate torque modeling with PSO-based recursive robust LSSVR for a segmented-rotor switched reluctance motor. CES Trans. Electr. Mach. Syst. 2020, 4, 96–104. [Google Scholar] [CrossRef]
- Li, H.; Cui, L.; Ma, Z.; Li, B. Multi-Objective Optimization of the Halbach Array Permanent Magnet Spherical Motor Based on Support Vector Machine. Energies 2020, 13, 5704. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, J.; Wang, Y.; Liu, K. Design optimization of permanent magnet synchronous linear motor by multi-SVM. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 1279–1282. [Google Scholar]
- Arnoux, P.; Caillard, P.; Gillon, F. Modeling Finite-Element Constraint to Run an Electrical Machine Design Optimization Using Machine Learning. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Song, J.; Dong, F.; Zhao, J.; Wang, H.; He, Z.; Wang, L. An Efficient Multiobjective Design Optimization Method for a PMSLM Based on an Extreme Learning Machine. IEEE Trans. Ind. Electron. 2019, 66, 1001–1011. [Google Scholar] [CrossRef]
- Song, J.; Zhao, J.; Dong, F.; Zhao, J.; Qian, Z.; Zhang, Q. A Novel Regression Modeling Method for PMSLM Structural Design Optimization Using a Distance-Weighted KNN Algorithm. IEEE Trans. Ind. Appl. 2018, 54, 4198–4206. [Google Scholar] [CrossRef]
- You, Y.-M. Multi-Objective Optimal Design of Permanent Magnet Synchronous Motor for Electric Vehicle Based on Deep Learning. Appl. Sci. 2020, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhao, J.; Zhou, Y.; Dong, F. New optimization design method for a double secondary linear motor based on R-DNN modeling method and MCS optimization algorithm. Chin. J. Electr. Eng. 2020, 6, 98–105. [Google Scholar] [CrossRef]
- Barmada, S.; Fontana, N.; Sani, L.; Thomopulos, D.; Tucci, M. Deep Learning and Reduced Models for Fast Optimization in Electromagnetics. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Sasaki, H.; Igarashi, H. Topology Optimization Accelerated by Deep Learning. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Doi, S.; Sasaki, H.; Igarashi, H. Multi-Objective Topology Optimization of Rotating Machines Using Deep Learning. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar] [CrossRef]
- Asanuma, J.; Doi, S.; Igarashi, H. Transfer Learning Through Deep Learning: Application to Topology Optimization of Electric Motor. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Li, J.; Water, W.; Zhu, B.; Lu, J. Integrated High-Frequency Coaxial Transformer Design Platform Using Artificial Neural Network Optimization and FEM Simulation. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Cao, Y.; Wang, H.; Hong, W. Machine-learning-assisted optimization and its application to antenna designs: Opportunities and challenges. China Commun. 2020, 17, 152–164. [Google Scholar] [CrossRef]
- Maeurer, C.; Futter, P.; Gampala, G. Antenna Design Exploration and Optimization using Machine Learning. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]
- Massa, A.; Marcantonio, D.; Chen, X.; Li, M.; Salucci, M. DNNs as Applied to Electromagnetics, Antennas, and Propagation—A Review. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2225–2229. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, Y.; Zhang, R.; Liu, Q.H. A Modified Efficient KNN Method for Antenna Optimization and Design. IEEE Trans. Antennas Propag. 2020, 68, 6858–6866. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L.; Zhang, H.H.; Sha, W.E.I. Machine Learning Methodology Review for Computational Electromagnetics. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium China (ACES), Nanjing, China, 8–11 August 2019; pp. 1–4. [Google Scholar]
- Erricolo, D.; Chen, P.; Rozhkova, A.; Torabi, E.; Bagci, H.; Shamim, A.; Zhang, X. Machine Learning in Electromagnetics: A Review and Some Perspectives for Future Research. In Proceedings of the 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 9–13 September 2019; pp. 1377–1380. [Google Scholar]
- Akinsolu, M.O.; Mistry, K.K.; Liu, B.; Lazaridis, P.I.; Excell, P. Machine Learning-assisted Antenna Design optimization: A Review and the State-of-the-art. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]
- Schenke, M.; Kirchgässner, W.; Wallscheid, O. Controller Design for Electrical Drives by Deep Reinforcement Learning: A Proof of Concept. IEEE Trans. Ind. Inform. 2020, 16, 4650–4658. [Google Scholar] [CrossRef]
- Traue, A.; Book, G.; Kirchgässner, W.; Wallscheid, O. Toward a Reinforcement Learning Environment Toolbox for Intelligent Electric Motor Control. IEEE Trans. Neural Netw. Learn. Syst. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Lei, G.; Liu, C.; Zhu, J.; Guo, Y. Robust Tolerance Design Optimization of a PM Claw Pole Motor With Soft Magnetic Composite Cores. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Mayr, A.; Meyer, A.; Gönnheimer, P.; Gramlich, J.; Reiser, M.; Franke, J. Concept for an integrated product and process development of electric drives using a knowledge-based system. In Proceedings of the 2017 7th International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 5–6 December 2017; pp. 1–7. [Google Scholar]
- Orosz, T.; Rassõlkin, A.; Kallaste, A.; Arsénio, P.; Pánek, D.; Kaska, J.; Karban, P. Robust Design Optimization and Emerging Technologies for Electrical Machines: Challenges and Open Problems. Appl. Sci. 2020, 10, 6653. [Google Scholar] [CrossRef]
- Schroeder, G.N.; Steinmetz, C.; Rodrigues, R.N.; Henriques, R.V.B.; Rettberg, A.; Pereira, C.E. A Methodology for Digital Twin Modeling and Deployment for Industry 4.0. Proc. IEEE 2020. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.Y.; Nee, A.Y.C. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 3935–3953. [Google Scholar] [CrossRef] [Green Version]
- Pliuhin, V.; Pan, M.; Yesina, V.; Sukhonos, M. Using Azure Maching Learning Cloud Technology for Electric Machines Optimization. In Proceedings of the 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 9–12 October 2018; pp. 55–58. [Google Scholar]
Model | Mathematical Expression | Type |
---|---|---|
Response surface model (RSM) | X: Structure matrix; : Coefficient matrix | Parametric |
Radial basis function (RBF) | H: RBF function; : Coefficient matrix | Parametric |
Kriging | q(x): Basis function; : Coefficient matrix; z(x): A stochastic process | Semi-parametric |
Artificial neural networks (ANN) | Basic artificial neuron model, : Weightings,: Neuron’s activation threshold; f: Transfer function. | Non-parametric |
Support vector machines (SVM) | : A function maps the input space to a higher dimensional feature space, w is a weighting vector, b: Bias term. | Non-parametric |
Extreme learning machines (ELM) | g: Activation function, w: Weighting vector; b: Threshold [138]. | Non-parametric |
Reference | Model | Application | Estimation Objectives or Optimization Methods |
---|---|---|---|
[129] | Convolutional neural network (CNN) | Electromagnetic devices including transformer and permanent magnet (PM) motor | Magnetic field estimation |
[130,131] | CNN, recurrent neural network (RNN) | permanent magnet synchronous motor (PMSMs) | Temperature Estimation |
[132] | ANN, CNN, RNN | Interior PM motors | Efficiency map and flux-linkage prediction |
[133,134] | SVM | Switched reluctance motor | Torque prediction |
[135,136] | SVM | PMSMs | Multi-objective optimization |
[137] | Random forest (RF) | Induction machine | Random forest algorithms |
[138] | ELM | PM synchronous linear motors | Multi-objective optimization, grey wolf optimization algorithm |
[139] | K-nearest neighbor (KNN) | PM synchronous linear motors | Differential evolution algorithm |
[140] | Multi-layer perceptron (MLP) | PMSMs | Hybrid metaheuristic algorithm |
[141] | R-DNN (deep neural network) | Double secondary linear motor | Cuckoo search algorithm |
[142] | CNN | Synchronous reluctance motor | Binary particle swarm optimization algorithm |
[143,144,145] | CNN | Interior PM motors | Topology optimization, multi-objective optimization, genetic algorithm |
[146] | ANN | High-frequency transformer | Structure optimization |
[147,148,149,150] | ANN, SVM, DNN | Antennas | Multi-objective and robust design optimization |
Modeling Method | Flux Linkage (mWb) | Torque (Nm) | ||
---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |
SVM | 0.846 | 0.756 | 0.1008 | 0.0925 |
LSSVR | 0.424 | 0.306 | 0.0525 | 0.0494 |
MCC-LSSVR | 0.086 | 0.073 | 0.0252 | 0.0189 |
Par. | Unit | DEA | RBF | Kriging | ANN-BP |
---|---|---|---|---|---|
R2 | m | 3.18 | 3.16 | 3.11 | 3.10 |
h2/2 | m | 0.428 | 0.365 | 0.267 | 0.232 |
d2 | m | 0.211 | 0.244 | 0.340 | 0.394 |
Bstray | mT | 1.032 | 0.957 | 0.943 | 0.938 |
E | MJ | 180.00 | 179.95 | 179.94 | 179.94 |
F | - | 0.344 | 0.319 | 0.315 | 0.313 |
FEM | - | 2310 | 202 | 157 | 159 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lei, G.; Bramerdorfer, G.; Peng, S.; Sun, X.; Zhu, J. Machine Learning for Design Optimization of Electromagnetic Devices: Recent Developments and Future Directions. Appl. Sci. 2021, 11, 1627. https://doi.org/10.3390/app11041627
Li Y, Lei G, Bramerdorfer G, Peng S, Sun X, Zhu J. Machine Learning for Design Optimization of Electromagnetic Devices: Recent Developments and Future Directions. Applied Sciences. 2021; 11(4):1627. https://doi.org/10.3390/app11041627
Chicago/Turabian StyleLi, Yanbin, Gang Lei, Gerd Bramerdorfer, Sheng Peng, Xiaodong Sun, and Jianguo Zhu. 2021. "Machine Learning for Design Optimization of Electromagnetic Devices: Recent Developments and Future Directions" Applied Sciences 11, no. 4: 1627. https://doi.org/10.3390/app11041627
APA StyleLi, Y., Lei, G., Bramerdorfer, G., Peng, S., Sun, X., & Zhu, J. (2021). Machine Learning for Design Optimization of Electromagnetic Devices: Recent Developments and Future Directions. Applied Sciences, 11(4), 1627. https://doi.org/10.3390/app11041627