Reconstruction of Missing Data in Weather Radar Image Sequences Using Deep Neuron Networks
Abstract
:1. Introduction
2. Model Description
2.1. CNN-BiConvLSTM Model
2.2. Baseline Models
2.2.1. Traditional Baseline Models
- Calculate velocity field using the global DIS optical flow algorithm [47] based on the radar images at times and .
- Use a backward constant-vector [48] to interpolate or extrapolate each pixel according to the velocity field.
- Obtain an irregular point cloud that consists of the original radar pixels. Then interpolate the intensity of these displaced pixels in the original radar grid. The inverse distance weighted interpolation technique is used in the interpolation.
2.2.2. Basic DNNs
3. Data and Experimental Design
3.1. Dataset
3.2. Experimental Configuration
3.3. Evaluation Metrics
4. Results
4.1. Evaluation Results for the Case of Interpolation
4.2. Evaluation and Comparison for the Case of Extrapolation
4.3. Influence of Data Quality and Model Size
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandrasekar, V.; Wang, Y.; Chen, H. The CASA quantitative precipitation estimation system: A five year validation study. Nat. Hazards Earth Syst. Sci. 2012, 12, 2811–2820. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, K.; Zhang, G.; Lin, Q.; Wen, L.; Chen, G.; Yang, Z.; Wang, M.; Hu, D. Quantitative Precipitation Estimation with Operational Polarimetric Radar Measurements in Southern China: A Differential Phase-Based Variational Approach. J. Atmos. Ocean. Technol. 2018, 35. [Google Scholar] [CrossRef]
- Liguori, S.; Rico-Ramirez, M. A review of current approaches to radar based Quantitative Precipitation Forecasts. Int. J. River Basin Manag. 2013, 12. [Google Scholar] [CrossRef]
- Novák, P.; Březková, L.; Frolík, P.; Šálek, M. Quantitative precipitation forecast using radar echo extrapolation. Atmos. Res. 2007, 93. [Google Scholar] [CrossRef]
- Lepot, M.; Aubin, J.-B.; Clemens, F.H.L.R. Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment. Water 2017, 9, 796. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, B.A.; Lohmann, D.; Mitchell, K.E.; Houser, P.R.; Wood, E.F.; Schaake, J.C.; Robock, A.; Marshall, C.; Sheffield, J.; Duan, Q.; et al. Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, F.; Chirico, G.B. Sampling errors in rainfall measurements by weather radar. Adv. Geosci. 2005, 2. [Google Scholar] [CrossRef] [Green Version]
- Langston, C.; Zhang, J.; Howard, K. Four-Dimensional Dynamic Radar Mosaic. J. Atmos. Ocean. Technol. 2007, 24. [Google Scholar] [CrossRef]
- Ruzanski, E.; Chandrasekar, V. Weather Radar Data Interpolation Using a Kernel-Based Lagrangian Nowcasting Technique. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3073–3083. [Google Scholar] [CrossRef]
- Sakaino, H. Spatio-Temporal Image Pattern Prediction Method Based on a Physical Model With Time-Varying Optical Flow. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3023–3036. [Google Scholar] [CrossRef]
- Li, L.; Schmid, W.; Joss, J. Nowcasting of Motion and Growth of Precipitation with Radar over a Complex Orography. J. Appl. Meteorol. 1995, 34, 1286–1300. [Google Scholar] [CrossRef] [Green Version]
- Ayzel, G.; Heistermann, M.; Winterrath, T. Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1). Geosci. Model Dev. 2019, 12, 1387–1402. [Google Scholar] [CrossRef] [Green Version]
- Bentamy, A.; Fillon, D.C. Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens. 2012, 33, 1729–1754. [Google Scholar] [CrossRef] [Green Version]
- Paulson, K.S. Fractal interpolation of rain rate time series. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Woo, W.-C.; Wong, W.-K. Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Germann, U.; Zawadzki, I. Scale-Dependence of the Predictability of Precipitation from Continental Radar Images. Part I: Description of the Methodology. Mon. Weather Rev. 2002, 130, 2859–2873. [Google Scholar] [CrossRef]
- Zahraei, A.; Hsu, K.-L.; Sorooshian, S.; Gourley, J.J.; Lakshmanan, V.; Hong, Y.; Bellerby, T. Quantitative Precipitation Nowcasting: A Lagrangian Pixel-Based Approach. Atmos. Res. 2012, 118, 418–434. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xi, D.-G.; Li, Z.-L.; Hong, Y. A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach. J. Hydrol. 2015, 529, 354–364. [Google Scholar] [CrossRef]
- Grecu, M.; Krajewski, W.F. A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting. J. Hydrol. 2000, 239, 69–84. [Google Scholar] [CrossRef]
- Austin, G.L.; Bellon, A. The use of digital weather radar records for short-term precipitation forecasting. Q. J. R. Meteorol. Soc. 1974, 100, 658–664. [Google Scholar] [CrossRef]
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679. [Google Scholar]
- Horn, B.K.P.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.; Janowiak, J.; Arkin, P.; Xie, P. CMORPH: A Method That Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrol. 2004, 5. [Google Scholar] [CrossRef]
- Ruzanski, E.; Chandrasekar, V.; Wang, Y. The CASA Nowcasting System. J. Atmos. Ocean. Technol. 2011, 28, 640–655. [Google Scholar] [CrossRef]
- Thorndahl, S.; Nielsen, J.E.; Rasmussen, M.R. Bias adjustment and advection interpolation of long-term high resolution radar rainfall series. J. Hydrol. 2014, 508, 214–226. [Google Scholar] [CrossRef]
- Nielsen, J.E.; Thorndahl, S.; Rasmussen, M.R. A numerical method to generate high temporal resolution precipitation time series by combining weather radar measurements with a nowcast model. Atmos. Res. 2014, 138, 1–12. [Google Scholar] [CrossRef]
- Ayzel, G.; Scheffer, T.; Heistermann, M. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting. Geosci. Model Dev. 2020, 13, 2631–2644. [Google Scholar] [CrossRef]
- Shi, X.J.; Chen, Z.R.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Hu, Y.; Lu, X. Learning spatial-temporal features for video copy detection by the combination of CNN and RNN. J. Vis. Commun. Image Represent. 2018, 55, 21–29. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, W.; Cui, Z.; Zong, Y.; Li, Y. Spatial-Temporal Recurrent Neural Network for Emotion Recognition. IEEE Trans. Cybern. 2018, 839–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes-Pacheco, J.; Torres-Olivares, J.; Roman-Rangel, E.; Cervantes, S.; Juarez-Lopez, P.; Hermosillo-Valadez, J.; Rendón-Mancha, J.M. Fig Plant Segmentation from Aerial Images Using a Deep Convolutional Encoder-Decoder Network. Remote Sens. 2019, 11, 1157. [Google Scholar] [CrossRef] [Green Version]
- Javaloy, A.; García-Mateos, G. Text Normalization Using Encoder–Decoder Networks Based on the Causal Feature Extractor. Appl. Sci. 2020, 10, 4551. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, C.; Pazzi, V.; Zou, Y.; Casagli, N. Microseismic Signal Denoising and Separation Based on Fully Convolutional Encoder–Decoder Network. Appl. Sci. 2020, 10, 6621. [Google Scholar] [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc.: South Lake Tahoe, NV, USA, 2014; pp. 3104–3112. [Google Scholar]
- Donahue, J.; Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Darrell, T.; Saenko, K. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2625–2634. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Srivastava, N.; Mansimov, E.; Salakhutdinov, R. Unsupervised learning of video representations using LSTMs. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 7–9 July 2015; Volume 37, pp. 843–852. [Google Scholar]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Deep learning for precipitation nowcasting: A benchmark and a new model. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5622–5632. [Google Scholar]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. Proc. Mach. Learn. Res. 2018, 80, 5123–5132. [Google Scholar]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; pp. 879–888. [Google Scholar]
- Wang, Y.; Zhang, J.; Zhu, H.; Long, M.; Wang, J.; Yu, P.S. Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9154–9162. [Google Scholar]
- Wang, Y.; Jiang, L.; Yang, M.H.; Li, L.J.; Long, M.; Fei-Fei, L. Eidetic 3D LSTM: A Model for Video Prediction and Beyond. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Exp. Algorithms 2015, 9351, 234–241. [Google Scholar]
- Peng, D.; Zhang, Y.; Guan, H. End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, S.; Geng, H.; Chen, Y.; Zhang, C.; Min, J. Strong Spatiotemporal Radar Echo Nowcasting Combining 3DCNN and Bi-Directional Convolutional LSTM. Atmosphere 2020, 11, 569. [Google Scholar] [CrossRef]
- Chang, Y.; Luo, B. Bidirectional Convolutional LSTM Neural Network for Remote Sensing Image Super-Resolution. Remote Sens. 2019, 11, 2333. [Google Scholar] [CrossRef] [Green Version]
- Kroeger, T.; Timofte, R.; Dai, D.; Van Gool, L. Fast optical flow using dense inverse search. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 471–488. [Google Scholar]
- Bowler, N.E.H.; Pierce, C.E.; Seed, A. Development of a precipitation nowcasting algorithm based upon optical flow techniques. J. Hydrol. 2004, 288, 74–91. [Google Scholar] [CrossRef]
- Mak Kwon, S.; Jung, S.-H.; Lee, G. Inter-comparison of radar rainfall rate using constant altitude plan position indicator and hybrid surface rainfall maps. J. Hydrol. 2015, 531, 234–247. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Woodcock, F. The Evaluation of Yes/No Forecasts for Scientific and Administrative Purposes. Mon. Weather Rev. 1976, 104, 1209–1214. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Vandal, T.; Nemani, R. Temporal Interpolation of Geostationary Satellite Imagery with Task Specific Optical Flow. In Proceedings of the 1st ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems (DeepSpatial ’20), Virtual Conference, 24 August 2020. [Google Scholar]
- Cruz, L.F.; Saito, P.T.M.; Bugatti, P.H. DeepCloud: An Investigation of Geostationary Satellite Imagery Frame Interpolation for Improved Temporal Resolution. In Proceedings of the 19th International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 12–14 October 2020. [Google Scholar]
- Winoto, A.S.; Kristianus, M.; Premachandra, C. Small and slim deep convolutional neural network for mobile device. IEEE Access 2020, 8, 125210–125222. [Google Scholar] [CrossRef]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. MemNet: A Persistent Memory Network for Image Restoration. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4549–4557. [Google Scholar]
- Guo, Z.; Sun, Y.; Jian, M.; Zhang, X. Deep Residual Network with Sparse Feedback for Image Restoration. Appl. Sci. 2018, 8, 2417. [Google Scholar] [CrossRef] [Green Version]
Missing Patterns | Metrics | Nearest Frame | Linear | Optical Flow | CNN- ConvLSTM | 3DCNN | CNN- BiConvLSTM |
---|---|---|---|---|---|---|---|
MAE | 2.5205 | 2.0783 | 1.8766 | 1.7332 | 1.5993 | 1.4650 | |
1111011111 | CSI | 0.3431 | 0.4044 | 0.4223 | 0.4194 | 0.4763 | 0.5085 |
HSS | 0.6088 | 0.6790 | 0.6947 | 0.7023 | 0.7264 | 0.7465 | |
MAE | 3.0002 | 2.3783 | 2.1617 | 1.9517 | 1.7244 | 1.5675 | |
1111001111 | CSI | 0.2835 | 0.3412 | 0.376 | 0.3640 | 0.4424 | 0.4828 |
HSS | 0.5532 | 0.6404 | 0.6546 | 0.6697 | 0.7071 | 0.7305 | |
MAE | 3.7057 | 2.8644 | 2.6966 | 2.3433 | 1.9619 | 1.7777 | |
1110000111 | CSI | 0.2121 | 0.2549 | 0.3029 | 0.2744 | 0.3781 | 0.4296 |
HSS | 0.4773 | 0.5804 | 0.5871 | 0.6129 | 0.6721 | 0.6976 | |
MAE | 4.2260 | 3.2542 | 3.2146 | 2.7135 | 2.2522 | 1.9966 | |
1100000011 | CSI | 0.1708 | 0.2039 | 0.2446 | 0.1996 | 0.3049 | 0.3784 |
HSS | 0.4250 | 0.5338 | 0.5287 | 0.5606 | 0.6298 | 0.6651 | |
MAE | 4.6448 | 3.5841 | 3.6964 | 3.5725 | 2.8397 | 2.3731 | |
1000000001 | CSI | 0.1431 | 0.1666 | 0.2007 | 0.0999 | 0.1883 | 0.3067 |
HSS | 0.3849 | 0.4967 | 0.4781 | 0.4460 | 0.5442 | 0.6131 | |
MAE | 2.5156 | 2.0735 | 1.8717 | 1.8304 | 1.6085 | 1.4670 | |
1010101011 | CSI | 0.3446 | 0.4052 | 0.4236 | 0.4026 | 0.4454 | 0.5067 |
HSS | 0.6092 | 0.6796 | 0.6950 | 0.6892 | 0.7244 | 0.7457 |
Missing Patterns | Metrics | Nearest Frame | Linear | Optical Flow | CNN- ConvLSTM | 3DCNN | CNN- BiConvLSTM |
---|---|---|---|---|---|---|---|
MAE | 2.5520 | 3.5274 | 1.9849 | 1.7530 | 1.8870 | 1.7283 | |
1111111110 | CSI | 0.3518 | 0.2467 | 0.4232 | 0.4304 | 0.3613 | 0.4558 |
HSS | 0.6147 | 0.5067 | 0.6883 | 0.7075 | 0.6893 | 0.7112 | |
MAE | 3.0322 | 4.5577 | 2.3037 | 1.9694 | 2.1186 | 1.9465 | |
1111111100 | CSI | 0.2903 | 0.1954 | 0.3718 | 0.3723 | 0.3238 | 0.4043 |
HSS | 0.5585 | 0.4367 | 0.6443 | 0.6746 | 0.6544 | 0.6784 | |
MAE | 3.4213 | 5.4307 | 2.6010 | 2.1713 | 2.3390 | 2.1469 | |
1111111000 | CSI | 0.2475 | 0.1651 | 0.3285 | 0.3210 | 0.2594 | 0.3543 |
HSS | 0.5157 | 0.3874 | 0.6062 | 0.6448 | 0.6221 | 0.6495 | |
MAE | 3.7422 | 6.1667 | 2.8694 | 2.3512 | 2.5471 | 2.3260 | |
1111110000 | CSI | 0.2160 | 0.1440 | 0.2938 | 0.2778 | 0.2216 | 0.3111 |
HSS | 0.4813 | 0.3505 | 0.5736 | 0.6181 | 0.5919 | 0.6236 | |
MAE | 3.3575 | 5.2202 | 2.5439 | 7.7030 | 2.3127 | 2.1017 | |
0001111111 | CSI | 0.2411 | 0.1643 | 0.3264 | 0. | 0.3203 | 0.3490 |
HSS | 0.5093 | 0.3935 | 0.6020 | 0.0367 | 0.6140 | 0.6431 |
Missing Patterns | Metrics | CNN-BiConvLSTM | CNN-BiConvLSTM-M | CNN-BiConvLSTM-L |
---|---|---|---|---|
MAE | 1.4650 | 1.4357 | 1.4159 | |
1111011111 | CSI | 0.5085 | 0.5137 | 0.5287 |
HSS | 0.7465 | 0.7519 | 0.7548 | |
MAE | 1.5675 | 1.5431 | 1.5206 | |
1111001111 | CSI | 0.4828 | 0.4811 | 0.5010 |
HSS | 0.7305 | 0.7351 | 0.7382 | |
MAE | 1.7777 | 1.7562 | 1.7294 | |
1110000111 | CSI | 0.4296 | 0.4217 | 0.4477 |
HSS | 0.6976 | 0.7018 | 0.7054 | |
MAE | 1.9966 | 1.9723 | 1.9420 | |
1100000011 | CSI | 0.3784 | 0.3684 | 0.3965 |
HSS | 0.6651 | 0.6696 | 0.6732 | |
MAE | 2.3731 | 2.3486 | 2.3010 | |
1000000001 | CSI | 0.3067 | 0.2880 | 0.3214 |
HSS | 0.6131 | 0.6169 | 0.6234 | |
MAE | 1.4670 | 1.4371 | 1.4182 | |
1010101011 | CSI | 0.5067 | 0.5132 | 0.5273 |
HSS | 0.7457 | 0.7515 | 0.7540 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Zheng, Y.; Wang, Y.; Xia, J.; Chen, X.; Li, B.; Luo, M.; Guo, Y. Reconstruction of Missing Data in Weather Radar Image Sequences Using Deep Neuron Networks. Appl. Sci. 2021, 11, 1491. https://doi.org/10.3390/app11041491
Gao L, Zheng Y, Wang Y, Xia J, Chen X, Li B, Luo M, Guo Y. Reconstruction of Missing Data in Weather Radar Image Sequences Using Deep Neuron Networks. Applied Sciences. 2021; 11(4):1491. https://doi.org/10.3390/app11041491
Chicago/Turabian StyleGao, Lihao, Yu Zheng, Yaqiang Wang, Jiangjiang Xia, Xunlai Chen, Bin Li, Ming Luo, and Yuchen Guo. 2021. "Reconstruction of Missing Data in Weather Radar Image Sequences Using Deep Neuron Networks" Applied Sciences 11, no. 4: 1491. https://doi.org/10.3390/app11041491
APA StyleGao, L., Zheng, Y., Wang, Y., Xia, J., Chen, X., Li, B., Luo, M., & Guo, Y. (2021). Reconstruction of Missing Data in Weather Radar Image Sequences Using Deep Neuron Networks. Applied Sciences, 11(4), 1491. https://doi.org/10.3390/app11041491