
remote sensing  

Article

Bidirectional Convolutional LSTM Neural Network
for Remote Sensing Image Super-Resolution

Yunpeng Chang and Bin Luo *

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China; changyunpeng@whu.edu.cn
* Correspondence: luob@whu.edu.cn

Received: 4 September 2019; Accepted: 4 October 2019; Published: 9 October 2019
����������
�������

Abstract: Single-image super-resolution (SR) is an effective approach to enhance spatial resolution
for numerous applications such as object detection and classification when the resolution of sensors
is limited. Although deep convolutional neural networks (CNNs) proposed for this purpose in recent
years have outperformed relatively shallow models, enormous parameters bring the risk of overfitting.
In addition, due to the different scale of objects in images, the hierarchical features of deep CNN contain
additional information for SR tasks, while most CNN models have not fully utilized these features.
In this paper, we proposed a deep yet concise network to address these problems. Our network
consists of two main structures: (1) recursive inference block based on dense connection reuse of local
low-level features, and recursive learning is applied to control the model parameters while increasing
the receptive fields; (2) a bidirectional convolutional LSTM (BiConvLSTM) layer is introduced
to learn the correlations of features from each recursion and adaptively select the complementary
information for the reconstruction layer. Experiments on multispectral satellite images, panchromatic
satellite images, and nature high-resolution remote-sensing images showed that our proposed
model outperformed state-of-the-art methods while utilizing fewer parameters, and ablation studies
demonstrated the effectiveness of a BiConvLSTM layer for an image SR task.
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1. Introduction

In the field of remote sensing, high-resolution (HR) images contain many detailed textures
and critical information, which are essential for object classification and detection tasks. Under the
limitation of hardware such as chips and sensors and the high production costs, super-resolution
(SR) is regarded as one of the most effective approaches to obtain high spatial resolution images
from single or multiple low-resolution (LR) images [1,2]. In the multi-frame method, establishing the
relation between a targeted HR image and several LR images of the same scene acquired at different
condition is used to create a higher resolution result. However, single-image SR algorithms have
to solely rely on one given input image, which is crucial when there is no additional data available.
Single-image SR methods can be efficiently used as pre-processing operations for additional manual or
automatic processing steps, such as classification or object extraction in general. However, with the loss
of high-frequency detailed information and multiple targets for a single LR image, the SR task is an
ill-posed inverse problem.

The detail of a physical object that a conventional optical system can reproduce in an image
has the limitations imposed by diffraction on the resolving power of optical systems. Harris [3] and
Goodman [4] established the theoretical foundation for the SR problem by introducing the theorems
of how to solve the diffraction problem in an optical system and introduced the term of SR to use as
a single LR image to reconstruct HR images. In the case of imaging objects with optical fields propagating
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to the far-field, the basic constraint is the diffraction of light, which limits the conventional optical
system to a spatial resolution comparable to the wavelength of light. Optical diffraction by the imaging
system transforms all radiation sources into blurred spatial distributions. In the field of remote sensing,
a point of the HR domain is blurred in the LR space during the acquisition process, which is specified
as the point spread function (PSF). Hence, SR can be seen as the inverting process of the degradation
generated by the imaging system to obtain an HR image. Tsai and Huang [5] proposed the idea
of using multiframe LR images for reconstruction to improve the spatial resolution of Landsat TM
images. A variety of approaches for remotely sensed images can be categorized as optics-based methods,
interpolation methods, and machine-learning methods [6–9]. Optics-based methods such as dielectric
cube terajet generation, wide-aperture lens, and solid-immersion technique have been proposed
for enhancing the resolution of imaging systems [10–14]. Compared with optics-based methods, the idea
behind machine-learning methods is to learn the potential relationships between low-resolution and
high-resolution domains from an external training set, then to generate the final super-resolved image
using this prior knowledge and machine-learning methods can improve the reconstruction quality
in parallel with optics-based methods. Deep learning methods have achieved great performance over
others among these machine-learning methods. Dong et al. [15] first proposed SRCNN with three layers
of neural networks to learn the end-to-end mapping between the LR and HR patches.

Recently, many methods (e.g., VDSR [16], EDSR [17], WDSR [18]) based on very deep neural
networks outperformed the relatively shallow CNN model [15,19,20]. It can be observed that among
these methods, there are two main strategies for the design of the SR model as shown in Figure 1.
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Figure 1. Simplified structures of (a) VDSR and (b) SRDenseNet. The first strategy, (a) VDSR, uses a 
deeper CNN model to enlarge the receptive fields and improve the representation power. The second 
strategy, (b) SRDenseNet, reuses the features from shallow layers. Due to the different scale of objects 
in images, hierarchical features from a very deep network would provide more additional 
information to reconstruct the HR images. 

However, the deeper CNN model (by adding more convolutional layers) gives rise to enormous 
parameters and the difficulty of the training procedure. The increasing depths of neural networks by 
adding more convolutional layers result in overwhelming parameters and the risk of overfitting [21]. 
As very deep networks with enormous parameters are highly likely to overfit and demand more 
storage space, DRCN [22] and DRRN [23] used recursive learning to repeatedly apply the same 
convolutional layer or residual units to reduce the model parameters and make the model compact. 
To address these problems, various techniques have been introduced in SR neural networks. We 
mainly review these techniques under three groups shown in Figure 2.  
  

Figure 1. Simplified structures of (a) VDSR and (b) SRDenseNet. The first strategy, (a) VDSR,
uses a deeper CNN model to enlarge the receptive fields and improve the representation power.
The second strategy, (b) SRDenseNet, reuses the features from shallow layers. Due to the different scale
of objects in images, hierarchical features from a very deep network would provide more additional
information to reconstruct the HR images.

However, the deeper CNN model (by adding more convolutional layers) gives rise to enormous
parameters and the difficulty of the training procedure. The increasing depths of neural networks
by adding more convolutional layers result in overwhelming parameters and the risk of overfitting [21].
As very deep networks with enormous parameters are highly likely to overfit and demand more storage
space, DRCN [22] and DRRN [23] used recursive learning to repeatedly apply the same convolutional
layer or residual units to reduce the model parameters and make the model compact. To address these
problems, various techniques have been introduced in SR neural networks. We mainly review these
techniques under three groups shown in Figure 2.Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 18 
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Figure 2. (a) skip connection: Both the global residual connection that links the input data and the 
output layer and the local residual connection from ResNet [24] alleviate the learning difficulty. (b) 
dense connection structures link all layers in the network and concatenate all of the preceding layers’ 
feature maps to alleviate vanishing gradients and reuse the features from shallow layers. (c) The green 
box refers to the recursive convolutional layer. Recursive neural networks repeatedly apply the same 
convolutional layers to control the parameters while achieving a large receptive field. 
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these residual units to further improve its performance.  

In the SR task, recurrent neural networks are usually implied in video SR to capture the long-
term dependency from neighboring frames [34]. BRCN [35,36] consists of three parts: The 
feedforward convolutional layer to capture the spatial dependence between LR and HR, the 
bidirectional recurrent convolutional network to capture the temporal dependency between 
successive frames, and the conditional convolutional layer to further capture spatial-temporal 
dependency. STCN [37] proposes a bidirectional LSTM structure to capture spatial-temporal 
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(b) dense connection structures link all layers in the network and concatenate all of the preceding layers’
feature maps to alleviate vanishing gradients and reuse the features from shallow layers. (c) The green
box refers to the recursive convolutional layer. Recursive neural networks repeatedly apply the same
convolutional layers to control the parameters while achieving a large receptive field.

Since there is a high correlation between the input image and the target HR image, many methods
such as VDSR [2], EDSR [16], WDSR [17], SRResNet [25], SRDCN [26], and DRRN [27] use the local
residual path from ResNet [24] and the global residual path to propagate the information from the shallow
layer to the final reconstruction layer. Several methods based on DenseNet [27] like SRDenseNet [28]
and RDN [29] use a concatenation strategy to combine preceding features to a bottleneck layer
for reconstruction. MemNet [30], CARN [31], RDN [29], ESRGAN [32], and DBPN [33] also adopt
dense connection to alleviate vanishing gradients and reuse the features from shallow layers. To control
the parameters while achieving a large receptive field, DRCN [22] repeatedly applied the same
convolutional layer at 16-recursions to reach a receptive field of 41 by 41. The DRRN [23] proposes
a recursive block consisting of several residual units and shares the weights among these residual units
to further improve its performance.

In the SR task, recurrent neural networks are usually implied in video SR to capture the long-term
dependency from neighboring frames [34]. BRCN [35,36] consists of three parts: The feedforward
convolutional layer to capture the spatial dependence between LR and HR, the bidirectional
recurrent convolutional network to capture the temporal dependency between successive frames,
and the conditional convolutional layer to further capture spatial-temporal dependency. STCN [37]
proposes a bidirectional LSTM structure to capture spatial-temporal information for video frame
reconstruction. For single image SR, based upon the idea of viewing a ResNet as an unrolled
RNN [38,39], DSRN [40] proposes a dual-state recurrent network, and each state operates at the LR and
HR spatial resolution separately to explore the connection between the LR and HR pairs and provides
information flow from LR to HR at every recursion.

In the remote sensing area, Hua et al. [41] proposed a novel RNN model for hyperspectral image
classification which can effectively analyze hyperspectral pixels as sequential data. Convolutional LSTM
was utilized to address the spectral-spatial feature learning problem and extract more discriminative
and abstract features for hyperspectral image classification [42–44]. Besides that, Mou et al. [45]
proposed a recurrent convolutional network architecture to effectively analyze temporal dependence
in bitemporal images for multitemporal remote sensing image analysis.

In this paper, we proposed a BiConvLSTM SR network (BCLSR) for remote sensing images.
Our intuition was that in order to reduce the model parameters while increasing the receptive
fields of our network, we had to build a recursive inference block with dense connection to extract
the hierarchical features. In the structure of the recursive inference block, paths are created between
a layer and every preceding layer to strengthen the flow of information through deep networks and reuse
the features extracted in the previous layers. Since there is redundancy and complementarity between
each recursion, we inserted a BiConvLSTM layer to effectively learn the correlations of each different
level and select the complementary information for the reconstruction layer. To fuse the hierarchical
features extracted from the recursive inference block, we concatenated the recursions of the recursive
inference block to a temporal sequence in the order of the recursion and passed through this sequence
to the BiConvLSTM layer to extract complementary information from the low-level features. Due to the
high correlations of the LR and HR images, we constructed a global residual path by upsampling
the LR images with the nearest-neighbor interpolation to the size of the HR images, and the other path
learned the high-frequency details.

In summary, our contributions are as follows in Figure 3:
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the recursive learning path by recursively implying the same block and the red line denotes the local
residual learning path.

(1) We proposed a novel recursive inference block to reuse the local low-level feature and widen
the receptive field without additional parameters. By recursively implying the block with the shared
weights, our deeper model with more nonlinearities could model more complex mapping functions
to further improve performance.

(2) We introduced a BiConvLSTM layer to fuse the hierarchical features by exploiting
the dependency and correlations of different level features. The BiConvLSTM layer adaptively
extracts complementary information from the low-level features to improve the performance.

(3) Our BCLSR achieves an improvement of about 0.9 dB over state-of-the-art results on
multispectral satellite images, panchromatic satellite images, and nature high-resolution remote
sensing images, while needing fewer parameters. Cross-validation experiments and comparison
of parameters-to-PSNR relationship further demonstrate the effectiveness of our method.

The rest of this paper is organized as follows. Section 2 describes the generation of our dataset
and presents our methods in detail. Section 3 provides extensive experiments to verify our methods
and a discussion of experimental results.

2. Materials and Methods

2.1. Datasets and Metrics

In this subsection, we describe the generation of the multispectral satellite image dataset and RGB
image dataset for training and testing our network.

Our datasets contained 100 high-quality Gaofen-2 (GF-2) images mainly acquired from Wuhan
and Guangzhou. The GF-2 satellites contain two panchromatic and multispectral (PMS) sensors
with a spatial resolution of 1 m panchromatic (pan) and 4 m multispectral (MS) with a combined
swath of 45 km. Each panchromatic and PMS image of the GF-2 satellite has a spatial dimension
of 27,200 × 28,800 pixels and 6800 × 7200 pixels covering a geographic area of 506 km2. We divided
both the panchromatic and PMS images into 256 × 256 pixel tiles to simplify the data management
and selection process. Like Liebel and Körner’s study [46], some of these remote sensing image tiles
captured from grassland, river, and agricultural areas had little structure or variance. To remove these
monotonous tiles, we used statistical metrics such as standard deviation to evaluate the global variation
and computed gradient changes to evaluate the local variation to select suitable image sets. Within all
of these suitable titles, we randomly chose a subset of 12,800 tiles for training and 1280 tiles for testing.

In addition to the multispectral satellite image dataset, we also tested our model with RGB
images on the Cars Overhead With Context (COWC) dataset [47], which contains images with a spatial
resolution of 0.15 m. The generation of the training set and testing set was similar to the process
described above.
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We generated an LR simulation of the datasets by subsequently sampling down the images,
according to the desired scale factor of 2, 3, and 4, by using bicubic interpolation as the training
output–input pairs. During training, training data is augmented with random horizontal flips and
blurred by Gaussian kernel of size 7 × 7 with a standard deviation of 1.6 following common data
augmentation methods [17,18]. The peak signal-to-noise ratio (PSNR) and the structural similarity
(SSIM) [48] index were used as metrics to quantify the results. Mathematically, PSNR is computed as

PSNR = 10 log
s2

1
NM‖IR − IH‖2

(1)

where s is the maximum of the image, and IR and IH are reconstructed images and HR images. M and N
are number of rows and columns. SSIM is computed as

SSIM(x, y) =
4σIRIH IRIH(
σ2

IR
+ σ2

IH

) (2)

where IR and IH are the mean of the reconstructed image and HR image; σIRIH , is the covariance of IR

and IH; and σIR and σIH are respectively the standard variance of IR and IH.

2.2. Network Structure

As shown in Figure 4, our BCLSR mainly consisted of the following modules: the convolution
layer for learning low-level features, the recursive inference block (RIB) to extract hierarchical features,
the BiConvLSTM layer to fuse the hierarchical features, and the sub-pixel layer [22] to transform feature
maps into the HR image space.
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Figure 4. The architecture of our proposed model. The green box refers to the recursive inference block,
among which the convolutional layers share the same weights. ⊕ is the element-wise addition.

We denote IL as the given LR images, and IH as the target HR images. Due to the high correlation
of IL and IH, we upsampled the LR to the size of HR in the global residual path FG by the nearest
interpolation. In the residual body, a single convolution layer convs with a kernel size of 3 × 3 extracts
low-level features from the LR input for further feature inference:

F0= max(0, convs(IL)) (3)

where F0 is used as the input to the recursive inference blocks (details about the RIB are presented
in Section 2.3). Hence, we further have the recursions by:

Fn= Sn
RIB(F0) (4)
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where RIBn denotes the operation of the n-fold recursive inference block and Fn (n = 1, . . . N) denotes
the output of n-th RIB. BiConvLSTM takes the concatenation of all results as an input according to the
order of recursion.

Ffuse= BCL([Fn, Fn−1, . . . , F1]) (5)

Then, we concatenated the hidden states of BiConvLSTM and passed through the subpixel layer,
then we added the output of the subpixel layer with the upsampled LR FG as the reconstruction.

2.3. Recursive Inference Block

Here, we introduce the details of the recursive inference block (RIB), as shown in Figure 5. Our RIB
contained a feature-expanding layer, densely-connected layers, and a local feature-fusion layer. Let us
denote conve as the first feature-expanding layer and convd,i as the i-th layer in densely-connected layers.
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(1) Feature expanding layer: We used a 1 × 1 convolution layer for feature expansion to allow
more information to pass through, which is widely used for channel number expansion or reduction
in ResNet [24], and then applied the non-linearity activation function (ReLUs) after the convolution
layer to keep the non-linearity. We denoted the output of the feature-expanding layers as

Fn,0= max(0, conve(Fn−1)) (6)

where Fn−1 denotes the output from the last recursion, and Fn,0 is then used as the input to the
densely-connected layer for further feature extraction.

(2) Densely-connected layer: In the structure of densely-connected layers, paths are created between
a layer and every preceding layer. This strengthens the flow of information through deep networks
and reuses the features extracted in previous layers refraining from the learning redundant feature,
and thus, alleviates the vanishing gradient problem [28]. The i-th layer convd,i in the densely-connected
layers concatenates the features of all of the preceding layers as the input, which can be formulated as

Fn,i= max(0,convd,i([Fn,0, Fn,1, . . . , Fn,i−1])) (7)

where [Fn,0, Fn,1, . . . , Fn,i−1] represents the concatenation of the outputs in all of the preceding layers
of the i-th layer in the n-fold RIB.

(3) Feature fusion layer: Since the output of the n-th fold RIB will be the input of the (n + 1)-th
fold RIB, it is essential to introduce a convolutional layer conv f to keep the same feature channel
number and fuse the local feature maps. We assumed that these are D densely-connected layers,
each consisting of G feature maps, and the channel number of the feature expanding layer is E. Hence,
the concatenation of all preceding outputs will have D ×G + E features. To further enhance the capacity
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of the RIB and improve the flow of information, we introduced a local residual path between the input
and output of the RIB, hence the final output of the n-th fold RIB can be obtained by:

Fn = Fn−1 + max
(
0, conv f

([
Fn,0, Fn,1, . . . , Fn,d

]))
(8)

We set 1 × 1 as the kernel size of the feature fusion layer to selectively fuse the features
from the previous densely-connected layers in the current stages. After the local residual learning,
each recursion applies the same inference block with the shared weights, and hence Equation (6) can
also be formulated as:

Fn = Sn
RIB(F0) = SRIB(SRIB(. . . SRIB(F0))) (9)

2.4. BiConvLSTM

To fuse the hierarchical features extracted from the recursive inference block, a bidirectional
convolutional LSTM cell was used to access the long-range context, as shown in Figure 6. The input,
which is the concatenation of all recursive inference block outputs according to the sequence,
is denoted as [Fn, Fn−1, . . . , F1]. ConvLSTM [49] and BiConvLSTM [50] are usually used to learn
global, long-term spatiotemporal features of videos. In our approach, we considered the recursions
of RIB as a temporal sequence in the order of the recursion.
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[Fn, Fn−1, . . . , F1] in the order of the sequence as a temporal sequence. h1

∗ and h2
∗ denote the middle stage

of the first hidden layer and the second layer, respectively, extracted from the forward and the backward
ConvLSTM layer hidden states hi

f ,∗ and hi
b,∗.

(1) BiConvLSTM layer: A BiConvLSTM cell essentially contains several ConvLSTM cells with
two cell states, separately a forward sequence cell and a backward sequence cell, to model the series
dependency from both the previous and next recursions, and can thereby access long-range dependency
features in both directions of the recursion sequence. The formulation of the forward or backward
ConvLSTM cell can be obtained by:

i f
n = σ

(
W f

f i ∗ Fn + W f
hi ∗H f

n−1 + b f
i

)
(10)



Remote Sens. 2019, 11, 2333 8 of 18

fn = σ
(
W f f ∗ Fn + Wh f ∗Hn−1 + b f

)
(11)

on = σ
(
W f o ∗ Fn + Who ∗Hn−1 + bo

)
(12)

Cn = fn �Cn−1 + in∗ tan h
(
W f c ∗ Fn + Whc ∗Hn−1 + bc

)
(13)

H f
n = on � tan h(Cn) (14)

where “∗” denotes the convolution operation; “�” denotes the Hadamard product; and “σ” denotes
the sigmoid function. W f

f ∗ and W f
h∗ represent the convolution kernels for the input stage and hidden

stage in the forward ConvLSTM cell, respectively.
(2) Multi-BiConvLSTM layer: We denoted the i-th ConvLSTM layer forward sequence hidden and

cell states as (hi
f ,ci

f ) and the backward sequence hidden states and cell states as (hi
b,ci

b). We concatenated
the corresponding hidden forward and backward hidden states in the first layer and passed them
through a 3 × 3 convolutional layer to obtain the hidden representations as the input of the second
BiConvLSTM layer. Then, we concatenated the hidden representations of the second BiConvLSTM
layer for the input of the upscaling layer.

2.5. Global Residual Path

Since super-resolution is an image-to-image translation task where the input LR image is highly
correlated with the target HR image, learning the residuals between LR and HR avoids learning
a complicated transformation from a complete image to another. Most models [16–18] based on
a global residual path use a single convolution layer with a kernel size bigger than 5 × 5 to extract
the low-level features. Because the residuals in most regions are close to zero, the model complexity
and learning difficulty are greatly reduced. By adopting the global residual learning, the main body
of our network is only required to learn a residual map to restore the missing high-frequency details.
We argue that the convolutional layer is actually not necessary for low-level feature extraction, hence,
we directly unpooled the input LR images to the size of HR images to construct the global residual path.
The upsampling methods should keep the main structure and low-frequency information of LR without
too much computation cost. In our experiments, we used the nearest interpolation method to upsample
LR in the global path, and we found this upsampling strategy slightly improved the accuracy and
simultaneously reduced the parameters and computations.

3. Results

In this section, we evaluated the methods introduced in Section 2 on multispectral remote sensing
images. Section 3.1 features detailed descriptions of the evaluation process and our training setup.
We undertook several experiments to understand the properties of our model, and the effect of increasing
the number of recursions is investigated in Sections 3.2 and 3.3. Finally, we compared our method with
several state-of-the-art methods in Section 3.4. Our codes are available [51].

3.1. Implementation Details

Our models were optimized with Adam [52] by setting β1 = 0.9 and β2 = 0.999, and the initial
learning rate was set to 1 × 10−3 and decreased by a factor of two every 10 epochs. We implemented
our proposed method via the Pytorch framework and trained them using NVIDIA 1080Ti GPUs,
and the batch size was set to 16. For multispectral and panchromatic satellite images, we divided
each channel as the input with a different model and for nature remote sensing images; we used
three-channel images for the model training. Hence, for different image types, we slightly modified
the channel of the reconstruction layer as three or one.
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3.2. Study of Recursive Inference Block

To study the effect of increasing recursion depth, we trained five models with different numbers
of recursions: 2, 4, 8, 16, and 32. To clearly show how recursions affected the performance, the five models
used the same inference block structure as described in Section 2 and set the growth-rate as 16 in the RIB,
hence each model had the same parameters. Table 1 shows the average PSNR and SSIM results for each
model on the COWC testing sets at a scale factor ×2. It was found that by implying more recursions,
both the PSNR and SSIM performances increased, while the processing time per 256 × 256 tiles also
increased. For the deeper model with larger receptive fields, vastly contextual information could be
utilized to infer the lost high-frequency of HR images, and by using the ReLU activation layer after each
convolutional layer, the deeper model with more nonlinearities could model more complex mapping
functions to further improve performance. Due to recursive learning, our deeper model with more
recursions could increase performance, but without additional parameters, and this strategy kept our
model more compact when the recursions were increased.

Table 1. Model comparisons at different recursion numbers in terms of PSNR and SSIM on the COWC
datasets for the scale factor ×2. The deeper model with more recursions achieved a better performance
because of the larger conceptive fields and more nonlinearities, while the processing time per tile
also increased.

Recursion PSNR (dB) SSIM Processing Time (s)

2 35.9383 0.9621 0.0193
4 36.2135 0.9632 0.0322
8 36.5686 0.9641 0.0469

16 36.8825 0.9650 0.0721
32 37.0531 0.9652 0.1398

3.3. Study of BiConvLSTM

In this subsection, to investigate the effects of the BiConvLSTM layer, we tested two other different
fusion strategies to fuse all of the hierarchical features, specifically by adding and concatenating all
of the recursions before the upsampling layer. We also tested our recursive model without a fusion
strategy and put the features from the last recursion to the upsampling layer to reconstruct the HR
images. We also tested our recursive model without a fusion strategy and put the features from the last
recursion to the upsampling layer to reconstruct the HR images.

For a fair comparison, all models used the same four-fold RIB that differed only in the fusion
blocks. Table 2 shows the mean PSNR and SSIM results on the COWC testing sets of the different
strategies at a scale factor ×2. As expected, the concatenation strategy obtained better performance
than the model without fusing the hierarchical feature, which indicates that the low-level features
provide essential information in the SR task. The strategy of adding all recursions was even worse
than that without fusion, indicating that using low-level features without any selection or weights can
actually impede the flow of information. Additionally, our BiConvLSTM strategy reduced redundant
and extracted complementary information from the low-level features by exploiting the dependency
and correlations of different level features, which further promoted the performance.

Table 2. Comparison of the average results on the COWC testing sets in terms of PSNR and SSIM for the
scale factor ×2 by using different strategies to fuse the hierarchical features. Selectively extracting
information from low-level features further improved the model performance.

Fusion Strategy PSNR (dB) SSIM

Without fusion 35.9637 0.9571
Add 35.9522 0.9565

Concate 36.0312 0.9573
BiConvLSTM 36.2135 0.9632
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3.4. Result Comparison

In this subsection, we evaluate the performance of our proposed BCLSR on the test set with
different upsampling factors, and compared it with some other methods including bicubic interpolation,
the classic CNN-based SRCNN [15], VDSR [16], EDSR [17], WDSR [18], and RDN [29]. For a fair
and convincing comparison, we slightly adjusted these methods and trained these networks under
our experimental dataset to obtain their best performance. For SRCNN [15], we used a 9-5-5 model
for comparison. For VDSR [16], EDSR [17], and WDSR [18], we used their public code and set
four residual blocks to have the same model depth. For RDN [29], we set their growth-rate as 16.
Considered with both speed and accuracy, our model used the 16-fold recursive inference block
for comparison and set the growth rate as 16.

Table 3 presents the ultimate mean PSNR and SSIM over the test images of these methods for ×2,
×3, and×4 upsampling factors. In terms of PSNR, our method achieved an improvement of about 0.9 dB
over state-of-the-art results on different datasets, but with fewer parameters. As the spatial resolution
of GF-2 images are 4 m and 1 m, too much high-frequency information is lost, which leads to the
average PSNR and SSIM of the GF-2 dataset being commonly lower than that of the COWC dataset.

Table 3. Average PSNR/SSIM results at scales ×2, ×3, and ×4 on our GF-2 datasets and the COWC
datasets. The red color indicates the best performance.

Dataset Scale Bicubic SRCNN [15] VDSR [16] EDSR [17] WDSR [18] RDN [29] Ours

multi
×2 22.3621/0.7298 24.6636/0.8524 25.7425/0.8541 26.2432/0.8576 26.9592/0.8654 27.0114/0.8661 28.0520/0.8794
×3 21.9478/0.7148 24.1481/0.8361 24.8528/0.8436 25.6459/0.8493 26.3841/0.8567 26.3419/0.8589 27.1440/0.8633
×4 21.6421/0.7194 23.7349/0.8219 24.1731/0.8368 24.5481/0.8419 25.1729/0.8485 25.1691/0.8490 25.9240/0.8538

pan
×2 23.4583/0.7605 26.8830/0.8523 27.8478/0.8624 27.9691/0.8731 28.5572/0.8874 28.5426/0.8852 29.4159/0.8925
×2 22.9761/0.7384 26.2414/0.8142 26.8993/0.8632 27.2823/0.8659 27.9147/0.8745 28.0278/0.8751 28.9123/0.8798
×4 21.7494/0.7129 25.6932/0.7942 25.7667/0.8223 25.8215/0.8434 26.5937/0.8512 26.6042/0.8551 26.9434/0.8672

COWC
×2 30.5916/0.9154 33.9821/0.9521 35.2361/0.9598 35.6907/0.9623 35.9886/0.9625 35.9746/0.9636 36.8825/0.9650
×3 29.1484/0.8241 31.4164/0.8542 31.9672/0.8764 32.4897/0.8954 32.9545/0.9078 33.0746/0.9103 33.9843/0.9286
×4 28.8461/0.7987 30.1873/0.8073 31.0381/0.8531 31.5901/0.8862 31.6792/0.8891 31.7273/0.8934 32.5528/0.8952

Figure 7 shows the comparisons of the SR results of these methods on the COWC test set, where our
method could well reconstruct the contours of cars. Figure 8 shows the multispectral satellite images
with blue, green, and red channels, and Figure 9 shows the panchromatic channel images. Our methods
reconstructed a sharper and clear roof with fewer artifacts, and models like RDN [29], which have too
many parameters, were more likely to over-fit, so their performance could be degraded with over-training.
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Figure 7. Qualitative comparisons of our model with other methods at the scale of ×3 on the COWC
test sets.
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We also tested these models with original images to generate SR results. There are many non-reference
quality metrics [53–55] to quantify these real-data results. Our experimental datasets contain natural
images, multispectral images, and panchromatic images, hence we employed BRISQUE [55] metric
to quantify the qualities of different types of reconstruction images without references. We used these
models trained under our experimental dataset at a scale factor ×3 and took the original spatial resolution
images as inputs to yield SR results. Table 4 presents the ultimate mean BRISQUE over the test images
of these methods for ×2, ×3, and ×4 upsampling factors.
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Table 4. Average BRISQUE results at scales ×2, ×3, and ×4 on our GF-2 datasets and the COWC
datasets. The red color indicates the best performance.

Dataset Scale Bicubic SRCNN [15] VDSR [16] EDSR [17] WDSR [18] RDN [29] Ours

multi
×2 49.0127 45.9521 42.8894 40.0320 38.5421 37.2690 35.5900
×3 53.1440 50.1416 49.7040 48.9662 45.7588 44.8927 43.2459
×4 61.3699 58.9284 55.0017 53.2863 51.9466 50.6996 49.3648

pan
×2 46.7117 42.2646 40.4815 39.7721 34.9061 35.9469 32.6524
×3 55.6381 52.46823 49.6719 47.2730 44.8361 43.3989 41.6488
×4 59.3537 56.7083 53.6317 52.3405 49.1415 48.4533 47.1435

COWC
×2 38.2804 35.7388 34.8030 32.6975 30.9478 29.4001 28.1540
×3 46.5723 45.5027 41.3250 40.9971 35.7353 36.1159 34.1814
×4 52.1886 48.4841 45.7582 43.9544 41.6560 40.3677 38.3023

Figures 10–12 show the results at scales ×3 on the COWC test set, GF-2 multispectral images,
and the panchromatic images at the original spatial resolution, respectively.
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Figure 11. Qualitative comparisons of our model with other methods at the scale of ×3 on the GF-2
multispectral channels test set at the original scale displayed with red, green, and blue channels.
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panchromatic channels test set at the original scale.

3.5. Cross-Validation Experiments

In this subsection, for further assessing how results of a statistical analysis will generalize
to an independent dataset, we compared our method with several state-of-art methods as described
in Section 3.4. For our cross-validation experiments, following Carranza-García et al. [56], we randomly
split COWC datasets into five equal-sized folds where each one fold is reserved for testing and the other
four are used for training. We repeatedly trained each model five times at a scale factor ×4, and hence
obtained five test accuracies for each model. We then calculated the mean and standard deviation of all
test accuracies.

Figure 13 shows the mean and standard deviation of PSNR on COWC datasets. Our method
outperformed the RDN [29] by about 0.3 dB, and the standard deviation is±0.0674 dB, which demonstrate
the effectiveness of our method. Furthermore, compared with methods based on deep learning,
the standard deviation of bicubic interpolation method 0.023 dB is smaller than other data-driven
methods. Nonetheless, the standard deviations of other methods are all below 0.08 dB and the accuracies
are much higher than the interpolation method.
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4. Discussion

(1) Difference to SRCNN and VDSR: First, SRCNN [15] and VDSR [16] needed to upsample
the original LR image to the desired size using Bicubic interpolation. This procedure results in feature
extraction and reconstruction in the HR space, while BCLSR extracts hierarchical features from
the original LR image, reducing computational complexity significantly and improving the performance.
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Secondly, SRCNN [15] and VDSR [16] used L2 loss function while we utilize the L1 loss function,
which has been demonstrated to be more powerful for performance and convergence.

(2) Difference to EDSR and WDSR: First, both EDSR [17] and WDSR [18] applied global residual
learning and local residual learning, but the global residual path of EDSR [17] and WDSR [18] are
the addition of low-level features and high-level features, which is computationally expensive. While in
BCLSR, as shown in Section 2.5, we directly introduced the nearest interpolation path to upsample LR
to the size of HR, forming the global residual path, which can accelerate the convergence. Secondly,
there is no dense connections among EDSR [17] and WDSR [18]. BCLSR adopts the densely-connected
structure to reuse low-level features to provide richer information for reconstructing high-quality details.

(3) Difference to RDN: RDN [29] also built upon the dense connection and constructed the basic
local dense block, while BCLSR utilized the recursive learning strategy and repeatedly applied the same
inference block, which can reduce the storage demand and keep a concise model while increasing its
depth. Secondly, RDN [29] concatenated all feature-maps produced by residual dense blocks and then
used a composite function of 1 × 1 and 3 × 3 convolution layer to fuse this concatenation. However,
as demonstrated in Section 3.3, this fusion strategy cannot fully extract global features. BCLSR applied
the BiConvLSTM layer to selectively extract complementary information from different level features
and avoids passing through redundant feature to the reconstruction layer.

(4) Parameters-to-PSNR comparison: To further compare the processing time and number
of parameters of different methods, in Figure 14, we illustrate the parameters-to-PSNR relationship
on the COWC testing sets at a scale factor ×2 of our model with recursions 4,8,16 (denoted as
BCLSR_R4, BCLSR_R8, BCLSR_R16), SRCNN [15], VDSR [16], EDSR [17], WDSR [18], and RDN [29].
The proposed BCLSR benefits from inherent parameter sharing and therefore obtains higher parameter
efficiency compared to other methods, and the local dense connection reuses the local low-level
feature, strengthening the information flow with each recursion. Besides that, due to the variant
scale of objects in remote sensing images, the BiConvLSTM layer extracts complementary information
from different level recursions and provides additional information to reconstruct the HR images.
As demonstrated in Figure 14, while the BiConvLSTM layer is a relatively time-consuming process
compared with RDN [29], our method outperforms RDN with fewer parameters and our method
represents a reasonable trade-off between model size and SR performance with modest inference time.
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Figure 14. Comparison of the PSNR and the model size of SR methods on the COWC datasets for the
scale factor ×2. The color of the point that corresponds to the bar on the right indicates the processing
times with a 256 × 256 output image size on GPUs.

(5) Failed cases: As the spatial resolution of GF-2 images are only 4 m and 1 m, too much
high-frequency information is lost especially in the area full of buildings. As shown in Figure 15,
the reconstruction of the white road is much better than the dense buildings at a scale of ×4. It is quite
a common phenomenon for large scale reconstruction that too much loss of information usually makes
SR methods fail to recover the fine details and the reconstruction result over-smooth.
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5. Conclusions

In this paper, we proposed a novel network BCLSR for remote sensing image SR tasks that employed
a recursive inference block and a BiConvLSTM layer to separately extract and fuse the hierarchical
features. Our model mainly benefits from three aspects: (1) since the receptive field is widened with
each recursion, more contextual information can be utilized for reconstruction without additional
parameters; (2) by reusing the local low-level feature, information flow can be strengthened from
LR to HR through the deep model, alleviating exploded or vanished gradients; (3) the BiConvLSTM
layer selectively extracts complementary information from all recursions and avoids passing through
a redundant feature to the reconstruction layer. Compared with other fusion strategies, our experiments
also demonstrated that by using the BiConvLSTM layer to exploit the dependency and correlations
of different level features, this could promote reconstruction performance. The experiment results
on multispectral satellite images, panchromatic satellite images, and nature high-resolution remote
sensing images demonstrated that the proposed method BCLSR outperformed state-of-the-art methods
with fewer parameters. Our future work will focus on: (1) in remote sensing areas, some computer
version tasks such as objection detection, due to the small size of objection in remote sensing images,
the SR task can improve the ability of objection detection. Hence, we will combine our SR method
with a real-time objection detection task on remote sensing images to further evaluate the effectiveness
of our methods by reducing the processing time; and (2) SR with guidance is attracting more attention,
and the auxiliary information from guidance can improve the reconstruction quality. In the remote
sensing area, the similar idea pansharpening is a fundamental and significant task in the field of remote
sensing imagery processing, in which high-resolution spatial details from panchromatic images are
employed to enhance the spatial resolution of MS images. Hence, another direction of our future work
will be to try to incorporate the panchromatic bands to improve the resolution of the multispectral
bands’ images by building a deep pansharpening model.
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