# Ambient Noise Measurements to Constrain the Geological Structure of the Güevéjar Landslide (S Spain)

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Geological Setting

## 3. Methodology

#### 3.1. Horizontal to Vertical Spectral Ratios (HVSR) Method

#### 3.2. Downhole Measurements

#### 3.3. Frequency-Wavenumber (f-k) Analysis

#### 3.4. Inversion of the Dispersion and HVSR Curves

^{3}, respectively, which correspond to the characteristics of the materials in the studied landslide.

## 4. Results and Discussion

#### 4.1. Downhole Results

#### 4.2. HVSR Analysis Resonance Frequencies

#### 4.3. S-Wave Velocity Profiles

#### 4.4. Landslide Geological Structure

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Sassa, K. The ISDR-ICL Sendai Partnerships 2015–2025: Background and content. In Advance Culture of Living with Landslides, ISDR-ICL Sendai Pertnerships 2015–2025; Sassa, K., Mikos, M., Yin, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1, pp. 3–21. [Google Scholar] [CrossRef] [Green Version]
- Lari, S.; Frattini, P.; Crosta, G.B. A probabilistic approach for landslide hazard analysis. Eng. Geol.
**2014**, 182, 3–14. [Google Scholar] [CrossRef] [Green Version] - Pazzi, V.; Morelli, S.; Fanti, R. A review of the advantages and limitations of geophysical investigations in landslide studies. Int. J. Geophys.
**2019**, 27, 2983087. [Google Scholar] [CrossRef] [Green Version] - Jongmans, D.; Garambois, S. Geophysical investigation of landslides: A review. Bull. Soc. Géol. France
**2007**, 178, 101–112. [Google Scholar] [CrossRef] [Green Version] - D’Amico, S.; Panzera, F.; Martino, S.; Iannucci, R.; Paciello, A.; Lombardo, G.; Galea, P.; Farrugia, D. Chapter 12-Ambient noise techniques to study near-surface in particular geological conditions: A brief review. In Innovation in Near-Surface Geophysics; Persico, R., Piro, S., Linford, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 419–460. [Google Scholar] [CrossRef]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface. Quart. Rep. Railw. Tech. Res. Inst. Jpn.
**1989**, 30, 25–33. [Google Scholar] - Aki, K. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst. Tokyo Univ.
**1957**, 25, 415–457. [Google Scholar] - Capon, J. High-resolution frequency-wavenumber spectral analysis. Proc. IEEE
**1969**, 57, 1408–1419. [Google Scholar] [CrossRef] [Green Version] - Ling, S.; Okada, H. An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors. In Proceedings of the 89th SEGJ Conference, Nagoya, Japan, 12–14 October 1993; pp. 44–48. [Google Scholar]
- Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J. Multichannel analysis of surface waves (MASW)-active and passive methods. Lead. Edge
**2007**, 26, 60–64. [Google Scholar] [CrossRef] - Bonnefoy-Claudet, S.; Cornou, C.; Bard, P.Y.; Cotton, F.; Moczo, P.; Kristek, J.; Fah, D. H/V ratio: A tool for site evaluation. Results from 1–D noise simulations. Geophys. J. Int.
**2006**, 67, 827–837. [Google Scholar] [CrossRef] [Green Version] - Picozzi, M.; Parolai, S.; Richwalski, S.M. Joint inversion of H/V ratios and dispersion curves from seismic noise: Estimating the S-wave velocity of bedrock. Geophys. Res. Lett.
**2005**, 32, L11308. [Google Scholar] [CrossRef] - Sambridge, M. Geophysical inversion with a neighbourhood algorithm I. Searching a parameter space. Geophys. J. Int.
**1999**, 138, 479–494. [Google Scholar] [CrossRef] [Green Version] - Wathelet, M. An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophys. Res. Lett.
**2008**, 35. [Google Scholar] [CrossRef] [Green Version] - Yamanaka, H.; Ishida, H. Application of genetic algorithms to an inversion of surface wave dispersion data. Bull. Seismol. Soc. Am.
**1996**, 86, 436–444. [Google Scholar] - Delgado, J.; Peláez, J.A.; Tomás, R.; García-Tortosa, F.J.; Alfaro, P.; López Casado, C. Seismically-induced landslides in the Betic Cordillera (S Spain). Soil Dyn. Earthq. Eng.
**2011**, 31, 1203–1211. [Google Scholar] [CrossRef] - Martínez Solares, J.M.; López Arroyo, A. The great historical 1755 earthquake. Effects and damage in Spain. J. Seismol.
**2004**, 8, 275–294. [Google Scholar] [CrossRef] - Sanz, E. Le mouvement de versant de Güevejar (Grenade) au cours des tremblements de terre de Lisbonne (1755) et d’Andalousie (1884). Bull. Interintl. Assoc. Eng. Geol.
**1997**, 56, 83–87. [Google Scholar] - Instituto Geográfico Nacional. El Terremoto de Andalucía del 25 de Diciembre de 1884; Publicaciones IGN: Madrid, Spain, 1980; 139p. [Google Scholar]
- Fernández Castro, M.; Lasala, J.P.; Cortázar, D.; Gonzalo Tarín, J. Terremoto de Andalucía: Informe de la Comisión nombrada para su estudio dando cuenta del estado de los trabajos en 7 de marzo de 1985. Boll. Com. Mapa Geol. Esp.
**1885**, 12, 1–105. [Google Scholar] - Jiménez-Pintor, J.; Azor, A. El Deslizamiento de Güevéjar (provincia de Granada): Un caso de inestabilidad de laderas inducida por sismos. Geogaceta
**2006**, 40, 287–290. [Google Scholar] - Rodríguez-Peces, M.J.; García-Mayordomo, J.; Azañón, J.M.; Insúa, J.M.; Jiménez Pintor, J. Constraining pre-instrumental earthquake parameters from slope stability back-analysis: Palaeoseismic reconstruction of the Güevéjar landslide during the 1st November 1755 Lisbon and 25th December 1884 Arenas del Rey earthquakes. Q. Intern.
**2011**, 242, 76–89. [Google Scholar] [CrossRef] - Martino, S.; Lenti, L.; Delgado, J.; Garrido, J.; López-Casado, C. Application of a Characteristic Periods-Based (CPB) approach to estimate earthquake-induced displacements of landslides through dynamic numerical modelling. Geophys. J. Int.
**2016**, 206, 85–102. [Google Scholar] [CrossRef] [Green Version] - Lacoss, R.T.; Kelly, E.J.; Toksöz, M.N. Estimation of seismic noise structure using array. Geophysics
**1969**, 29, 21–38. [Google Scholar] [CrossRef] - Ohrnberger, M.; Scherbaum, F.; Krüger, F.; Pelzing, R.; Reamer, S.K. How good are shear wave velocity models obtained from inversion of ambient vibrations in the lower Rhine embayment (N.W. Germany). Boll. Geofis. Teor. Appl.
**2004**, 45, 215–232. [Google Scholar] - Rodríguez-Fernández, J.; Sanz de Galdeano, C. Late orogenic intramontane basin development: The Granada basin, Betics (Southern Spain). Basin Res.
**2006**, 18, 85–102. [Google Scholar] [CrossRef] [Green Version] - Fernández, J.; Soria, J.M.; Viseras, C. Stratigraphic architecture of the Neogene basins in the central sector of the Betic Cordillera (Spain): Tectonic control and base level changes. In Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics; Friend, P.F., Dabrio, C.J., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 353–365. [Google Scholar]
- Dabrio, C.J.; Fernández, J.; Peña, J.A.; Ruiz-Bustos, A.; Sanz de Galdeano, C. Rasgos sedimentarios de los conglomerados miocenos del borde Noreste de la Depresión de Granada. Estud. Geol.
**1978**, 343, 89–97. [Google Scholar] - Dabrio, C.J.; Fernández, J.; Peña, J.A.; Ruiz-Bustos, A.; Sanz de Galdeano, C. Interpretation sedimentaire des materiaux néogènes du bord nord-est du Bassin Grenade (Espagne). C.R. Somm. Seanc. Soc. Geol. France
**1978**, 3, 121–123. [Google Scholar] - Cruden, D.M.; Varnes, D.J. Landslide type and processes. In Landslides. Investigation and Mitigation; Special Report 247; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board, National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Meléndez, B.; Fuster, J.M. Geología; Paraninfo: Madrid, Spain, 1966; p. 687. [Google Scholar]
- Nogoshi, M.; Igarashi, T. On the propagation characteristics estimations of subsurface using microtremors on the ground surface. J. Seism. Soc. Japan
**1971**, 23, 264–280. [Google Scholar] - Lermo, J.; Chávez-García, F.J. Site effect evolution using spectral ratios with only one station. Bull. Seismol. Soc. Am.
**1993**, 83, 1574–1594. [Google Scholar] - Lachet, C.; Bard, P.Y. Numerical and theoretical investigations on the possibilities and limitations of the Nakamura’s technique. J. Phys. Earth.
**1994**, 42, 377–397. [Google Scholar] [CrossRef] - Field, E.H.; Jacob, K.H. A comparison and test of various site response estimation techniques, including three that are non reference–site dependent. Bull. Seismol. Soc. Am.
**1995**, 85, 1127–1143. [Google Scholar] - Gitterman, Y.; Zaslavsky, Y.; Shapira, A.; Shtivelman, V. Empirical site response evaluations: Case studies in Israel. Soil Dyn. Earthq. Eng.
**1996**, 15, 447–463. [Google Scholar] [CrossRef] - Seekins, L.C.; Wennerberg, L.; Marghereti, L.; Liu, H.P. Site amplification at five locations in San Fransico, California: A comparison of S waves, codas, and microtremors. Bull. Seismol. Soc. Am.
**1996**, 86, 627–635. [Google Scholar] - Albarello, D.; Lunedei, E. Alternative interpretations of horizontal to vertical spectral ratios of ambient vibrations: New insights from theoretical modeling. Bull. Earthq. Eng.
**2010**, 8, 519–534. [Google Scholar] [CrossRef] - Schwellenbach, I.; Hinzen, K.-G.; Petersen, G.M.; Bottari, C. Combined use of refraction seismic, MASW, and ambient noise array measurements to determine the near-surface velocity structure in the Selinunte Archaeological Park, SW Sicily. J. Seismol.
**2020**, 24, 753–776. [Google Scholar] [CrossRef] [Green Version] - D’Amico, V.; Picozzi, M.; Baliva, F.; Albarello, D. Ambient noise measurements for preliminary site effects characterization in the urban area of Florence, Italy. Bull. Seismol. Soc. Am.
**2008**, 98, 1373–1388. [Google Scholar] [CrossRef] - Mundepi, A.K.; Galiana-Merino, J.J.; Asthana, A.K.L.; Rosa-Cintas, S. Soil characteristics in Doon Valley (northwest Himalaya, India) by inversion of H/V spectral ratios from ambient noise measurements. Soil Dyn. Earthq. Eng.
**2015**, 77, 309–320. [Google Scholar] [CrossRef] - Issaadi, A.; Semmane, F.; Yelles-Chaouche, A.K.; Galiana-Merino, J.J.; Layadi, K. A shear-wave velocity model in the city of Oued-Fodda (Northern Algeria) from Rayleigh wave ellipticity inversion. Appl. Sci.
**2020**, 10, 1717. [Google Scholar] [CrossRef] [Green Version] - Panzera, F.; Lombardo, G.; Imposa, S.; Grassi, S.; Gresta, S.; Catalano, S.; Romagnoli, G.; Tortorici, G.; Patti, F.; Di Maio, E. Correlation between earthquake damage and seismic site effects: The study case of Lentini and Carlentini, Italy. Eng. Geol.
**2018**, 240, 149–162. [Google Scholar] [CrossRef] - Wathelet, M.; Chatelain, J.-L.; Cornou, C.; Di Giulio, G.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett.
**2020**, 91, 1878–1889. [Google Scholar] [CrossRef] - Wathelet, M. Array recordings of ambient vibrations: Surface-Wave Inversion. PhD. Thesis, Université de Liège, Liège, Belgium, 2005. [Google Scholar]
- Konno, K.; Ohmachi, T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors. Bull. Seismol. Soc. Am.
**1998**, 88, 228–241. [Google Scholar] - Scherbaum, F.; Hinzen, K.-G.; Ohrnberger, M. Determination of shallow shear wave velocity profiles in the Cologne/Germany area using ambient vibrations. Geophys. J. Int.
**2003**, 152, 597–612. [Google Scholar] [CrossRef] [Green Version] - Horike, M. Inversion of phase velocity of long period microtremors to the S-wave velocity structure down to the basement in urbanized areas. J. Phys. Earth
**1985**, 33, 59–96. [Google Scholar] [CrossRef] [Green Version] - Okada, H. The Microtremor Survey Method, Geophysical Monograph Series 12; Society of Exploration Geophysicists: Tulsa, OK, USA, 2003. [Google Scholar]
- Asten, M.W.; Henstridge, J.D. Array estimators and use of microseisms for reconnaissance of sedimentary basins. Geophysics
**1984**, 49, 1828–1837. [Google Scholar] [CrossRef] - Arai, H.; Tokimatsu, K. S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull. Seismol. Soc. Am.
**2004**, 94, 53–63. [Google Scholar] [CrossRef] - NEHRP. Recommended Seismic Provisions for New Buildings and Other Structures; FEMA P-750. 2009 Edition; NIST: Gaithersburg, MA, USA, 2009. [Google Scholar]
- Galiana-Merino, J.J.; Mahajan, A.K.; Lindholm, C.; Rosa-Herranz, J.; Mundepi, A.K.; Rai, N. Seismic noise array measurements using broadband stations and vertical geophones: Preliminary outcomes for the suitability on f-k analysis. Bull. Earthq. Eng.
**2011**, 9, 1309–1325. [Google Scholar] [CrossRef] - Rosa-Cintas, S.; Galiana-Merino, J.J.; Rosa-Herranz, J.; Molina, S.; Giner-Caturla, J. Suitability of 10 Hz vertical geophones for seismic noise array measurements based on frequency-wavenumber and extended spatial autocorrelation analyses. Geophys. Prospect.
**2012**. [Google Scholar] [CrossRef] - Wathelet, M.; Jongmans, D.; Ohrnberger, M. Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf. Geophys.
**2004**, 2, 211–221. [Google Scholar] [CrossRef] [Green Version] - Panzera, F.; Tortorici, G.; Romagnoli, G.; Marletta, G.; Catalano, S. Empirical evidence of orthogonal relationship between directional site effects and fracture azimuths in an active fault zone: The case of the Mt. Etna lower eastern flank. Eng. Geol.
**2020**, 279, 105900. [Google Scholar] [CrossRef] - Panzera, F.; Romagnoli, G.; Tortorici, G.; D’Amico, S.; Rizza, M.; Catalano, S. Integrated use of ambient vibrations and geological methods for seismic microzonation. J. Appl. Geophys.
**2019**, 170, 103820. [Google Scholar] [CrossRef] - Fäh, D.; Kind, F.; Giardini, D. A theoretical investigation of average H/V ratios. Geophys. J. Int.
**2001**, 145, 535–549. [Google Scholar] [CrossRef] [Green Version] - Fäh, D.; Kind, F.; Giardini, D. Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. J. Seismol.
**2003**, 7, 449–467. [Google Scholar] [CrossRef] - SESAME. Guidelines for the Implementation of the H/V Spectral Ration Technique on Ambient Vibrations Measurements, Processing and Interpretation; SESAME European research project WP12_ Deliverable D23.12; Euratom: Rome, Italy, 2004. [Google Scholar]

**Figure 1.**Location map of the study area. (

**1**) Basin basement, (

**2**) basin fill (Neogene sedimentary rocks), (

**3**) urban areas and (

**4**) location of the 1884 earthquake (Mw 6.5) that reactivated the landslide.

**Figure 2.**Geological map of the landslide area. (

**1**) Landslide scarps, (

**2**) faults, (

**3**) springs, (

**4**) well points and depth to water table (in m), (

**5**) marls unit (MU unit), (

**6**) red silts unit (RSU unit), (

**7**) marls of the Marl and Limestone unit (MLU unit), (

**8**) limestone of the Marl and Limestone unit (MLU unit), (

**9**) red clays of the Recent Red Deposits unit (RRD unit), (

**10**) other landslides, (

**11**) Güevéjar landslide, (

**12**) earth-flow in the Güevéjar landslide, (

**13**) urban areas and (

**14**) strike and dip of bedding.

**Figure 3.**Location of sites of measurement in the Guëvéjar landslide area. The colors and signatures are the same as in Figure 2.

**Figure 4.**Soil columns and downhole results obtained at boreholes drilled in the landslide. The plot also depicts results obtained from the inversion of noise measurements at the same locations (see Figure 3 for location of the boreholes).

**Figure 5.**(

**a**) Array layout; (

**b**) corresponding theoretical response. The k limits corresponding to the maximum resolution (kmin/2) and the aliasing limit (kmax) are also indicated.

**Figure 6.**Examples of HVSR curves estimated in the central area of the landslide. Check Figure 3 for the location of the sites.

**Figure 7.**HVSR inversion for six sites (see Figure 3 for location of sites). The best ellipticity and velocity models (dark grey lines), together with models lying inside the minimum misfit + 10% (dark orange) and all the tested models, are shown. The black curve and bars in the ellipticity plots are the average and standard deviation, respectively, of the experimental HVSR curve. The dashed lines in the velocity profiles indicate the search bounds.

**Figure 8.**Dispersion curve inversion for six different sites (see Figure 3 for location of sites). The best dispersion and velocity models (dark gray lines), together with models lying inside the minimum misfit + 10% (dark orange) and all the tested models, are shown. The black curve and bars in the velocity-frequency plots are the average and standard deviation, respectively, of the experimental dispersion curve. The dashed lines in the velocity profiles indicate the search bounds.

**Figure 9.**Longitudinal cross sections of the landslide. See Figure 3 for location of sections. The dashed red line shows the location of the failure surface.

**Figure 10.**Transversal cross sections of the landslide. See Figure 3 for location of sections.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Delgado, J.; Galiana-Merino, J.J.; García-Tortosa, F.J.; Garrido, J.; Lenti, L.; Martino, S.; Peláez, J.A.; Rodríguez-Peces, M.J.; de Galdeano, C.S.; Soler-Llorens, J.L.
Ambient Noise Measurements to Constrain the Geological Structure of the Güevéjar Landslide (S Spain). *Appl. Sci.* **2021**, *11*, 1454.
https://doi.org/10.3390/app11041454

**AMA Style**

Delgado J, Galiana-Merino JJ, García-Tortosa FJ, Garrido J, Lenti L, Martino S, Peláez JA, Rodríguez-Peces MJ, de Galdeano CS, Soler-Llorens JL.
Ambient Noise Measurements to Constrain the Geological Structure of the Güevéjar Landslide (S Spain). *Applied Sciences*. 2021; 11(4):1454.
https://doi.org/10.3390/app11041454

**Chicago/Turabian Style**

Delgado, José, Juan José Galiana-Merino, Francisco J. García-Tortosa, Jesús Garrido, Luca Lenti, Salvatore Martino, José A. Peláez, Martín J. Rodríguez-Peces, Carlos Sanz de Galdeano, and Juan L. Soler-Llorens.
2021. "Ambient Noise Measurements to Constrain the Geological Structure of the Güevéjar Landslide (S Spain)" *Applied Sciences* 11, no. 4: 1454.
https://doi.org/10.3390/app11041454