Synthesis and Characterization of Unsaturated Succinic Acid Biobased Polyester Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of UPRs and Cross-Linking Procedure
2.3. Characterization Methods
2.3.1. Nuclear Magnetic Resonance Spectroscopy (1H-NMR)
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. Size-Exclusion Chromatography (SEC)
2.3.4. Rheological Properties
2.3.5. Differential Scanning Calorimetry (DSC)
2.3.6. X-ray Photoelectron Spectroscopy (XPS)
2.3.7. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Synthesis of Unsaturated Resins
3.2. Characterisation of Unsaturated Resins
3.2.1. 1H NMR
3.2.2. FTIR
3.2.3. Molecular Weight Determination by SEC
3.2.4. Viscosity Measurements
3.3. Synthesis and Characterization of Cross-Linked Resins
3.3.1. DSC Results
3.3.2. Spectroscopies Studies
3.3.3. Thermal Stability of Cross-Linked Resins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Penczek, P.; Czub, P.; Pielichowski, J. Unsaturated polyester resins: Chemistry and technology. Adv. Polym. Sci. 2005, 184, 1–95. [Google Scholar] [CrossRef]
- Jones, F.R. Unsaturated Polyester Resins. In Brydson’s Plastics Materials, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 743–772. ISBN 9780323358248. [Google Scholar]
- Malik, M.; Choudhary, V.; Varma, I.K. Current Status of Unsaturated Polyester Resins. J. Macromol. Sci. Part C Polym. Rev. 2000, 40, 139–165. [Google Scholar] [CrossRef]
- Li, Q.; Ma, S.; Xu, X.; Zhu, J. Bio-based Unsaturated Polyesters. In Unsaturated Polyester Resins; Elsevier: Amsterdam, The Netherlands, 2019; pp. 515–555. ISBN 9780128161296. [Google Scholar]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Schneiderman, D.K.; Hillmyer, M.A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules 2017, 50, 3733–3749. [Google Scholar] [CrossRef]
- Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass: Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Off. Sci. Tech. Inf. 2004, 69. [Google Scholar] [CrossRef] [Green Version]
- Schoon, I.; Kluge, M.; Eschig, S.; Robert, T. Catalyst influence on undesired side reactions in the polycondensation of fully bio-based polyester itaconates. Polymers 2017, 9, 693. [Google Scholar] [CrossRef] [Green Version]
- Robert, T.; Eschig, S.; Biemans, T.; Scheifler, F. Bio-based polyester itaconates as binder resins for UV-curing offset printing inks. J. Coatings Technol. Res. 2019, 16, 689–697. [Google Scholar] [CrossRef]
- Papadopoulos, L.; Kluge, M.; Bikiaris, D.N.; Robert, T. Straightforward synthetic protocol to bio-based unsaturated poly(ester amide)s from itaconic acid with thixotropic behavior. Polymers 2020, 12, 980. [Google Scholar] [CrossRef] [Green Version]
- Ouhichi, R.; Pérocheau Arnaud, S.; Bougarech, A.; Abid, S.; Abid, M.; Robert, T. First Example of Unsaturated Poly(Ester Amide)s Derived From Itaconic Acid and Their Application as Bio-Based UV-Curing Polymers. Appl. Sci. 2020, 10, 2163. [Google Scholar] [CrossRef] [Green Version]
- Terzopoulou, Z.; Tsanaktsis, V.; Bikiaris, D.N.; Exarhopoulos, S.; Papageorgiou, D.G.; Papageorgiou, G.Z. Biobased poly(ethylene furanoate-co-ethylene succinate) copolyesters: Solid state structure, melting point depression and biodegradability. RSC Adv. 2016, 6, 84003–84015. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Mincheva, R.; Xu, Y.; Raquez, J.; Dubois, P. High Molecular Weight Poly(butylene succinate-co-butylene furandicarboxylate) Copolyesters: From Catalyzed Polycondensation Reaction to Thermomechanical Properties. Biomacromolecules 2012, 13, 2973–2981. [Google Scholar] [CrossRef] [PubMed]
- Kluge, M.; Rennhofer, H.; Lichtenegger, H.C.; Liebner, F.W.; Robert, T. Poly(ester amide)s from poly(alkylene succinate)s and rapid crystallizing amido diols: Synthesis, thermal properties and crystallization behavior. Eur. Polym. J. 2020, 129, 109622. [Google Scholar] [CrossRef]
- Klonos, P.A.; Kluge, M.; Robert, T.; Kyritsis, A.; Bikiaris, D.N. Molecular dynamics, crystallization and hydration study of Poly(Propylene succinate) based Poly(Ester amide)s. Polymer (Guildf.) 2020, 186, 122056. [Google Scholar] [CrossRef]
- Kluge, M.; Bikiaris, D.N.; Robert, T. Enhancing the properties of poly(propylene succinate) by the incorporation of crystallizable symmetrical amido diols. Eur. Polym. J. 2019, 120, 109195. [Google Scholar] [CrossRef]
- Jacquel, N.; Freyermouth, F.; Fenouillot, F.; Rousseau, A.; Pascault, J.P.; Fuertes, P.; Saint-Loup, R. Synthesis and properties of poly(butylene succinate): Efficiency of different transesterification catalysts. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 5301–5312. [Google Scholar] [CrossRef]
- Jiang, M.; Ma, J.; Wu, M.; Liu, R.; Liang, L.; Xin, F.; Zhang, W.; Jia, H.; Dong, W. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Bioresour. Technol. 2017, 245, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Jasinska-Walc, L.; Koning, C.E. Unsaturated, Biobased Polyesters and Their Cross-Linking via Radical Copolymerization. J. Polym. Sci. 2010. [Google Scholar] [CrossRef]
- Mehta, L.B.; Wadgaonkar, K.K.; Jagtap, R.N. Synthesis and characterization of high bio-based content unsaturated polyester resin for wood coating from itaconic acid: Effect of various reactive diluents as an alternative to styrene. J. Dispers. Sci. Technol. 2019, 40, 756–765. [Google Scholar] [CrossRef]
- Waig, S.; De Caro, P.; Pennarun, P.; Vaca-Garcia, C.; Thiebaud-Roux, S. Synthesis and characterization of new polyesters based on renewable resources. Ind. Crop. Prod. 2013, 43, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Noordover, B.A.J.; van Staalduinen, V.G.; Duchateau, R.; Koning, C.E.; van Benthem, R.A.T.M.; Mak, M.; Heise, A.; Frissen, A.E.; van Haveren, J. Co- and terpolyesters based on isosorbide and succinic acid for coating applications: Synthesis and characterization. Biomacromolecules 2006, 7, 3406–3416. [Google Scholar] [CrossRef]
- Brännström, S.; Malmström, E.; Johansson, M. Biobased UV-curable coatings based on itaconic acid. J. Coatings Technol. Res. 2017, 14, 851–861. [Google Scholar] [CrossRef] [Green Version]
- Farmer, T.J.; Castle, R.L.; Clark, J.H.; Macquarrie, D.J. Synthesis of unsaturated polyester resins from various bio-derived platform molecules. Int. J. Mol. Sci. 2015, 16, 14912–14932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhang, Y. Oxidative Dehydration of Glycerol to Acrylic Acid over Vanadium-Substituted Cesium Salts of Keggin-Type Heteropolyacids. ACS Catal. 2016, 6, 2785–2791. [Google Scholar] [CrossRef]
- Pestana, C.F.M.; Guerra, A.C.O.; Ferreira, G.B.; Turci, C.C.; Mota, C.J.A. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta. J. Braz. Chem. Soc. 2013, 24, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Witsuthammakul, A.; Sooknoi, T. Direct conversion of glycerol to acrylic acid via integrated dehydration–oxidation bed system. Appl. Catal. A Gen. 2012, 413–414, 109–116. [Google Scholar] [CrossRef]
- Deleplanque, J.; Dubois, J.-L.; Devaux, J.-F.; Ueda, W. Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catal. Today 2010, 157, 351–358. [Google Scholar] [CrossRef]
- Fava, R.A. Differential scanning calorimetry of epoxy resins. Polymer (Guildf.) 1968, 9, 137–151. [Google Scholar] [CrossRef]
- Takenouchi, S.; Takasu, A.; Inai, Y.; Hirabayashi, T. Effects of Geometric Structure in Unsaturated Aliphatic Polyesters on Their Biodegradability. Polym. J. 2001, 33, 746–753. [Google Scholar] [CrossRef]
- Matynia, T.; Worzakowska, M.; Tarnawski, W. Synthesis of unsaturated polyesters of increased solubility in styrene. J. Appl. Polym. Sci. 2006, 101, 3143–3150. [Google Scholar] [CrossRef]
- Hernández-Moreno, D.; de la Casa Resino, I.; Soler-Rodríguez, F. Maleic Anhydride. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 3, pp. 138–141. [Google Scholar] [CrossRef]
- Lohbeck, K.; Haferkorn, H.; Fuhrmann, W.; Fedtke, N. Maleic and fumaric acids. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Worzakowska, M. Chemical modification of unsaturated polyesters influence of polyester’s structure on thermal and viscoelastic properties of low styrene content copolymers. J. Appl. Polym. Sci. 2009, 114, 720–731. [Google Scholar] [CrossRef]
- Pérocheau Arnaud, S.; Hashemi, P.; Mischnick, P.; Robert, T. Optimized synthesis of highly reactive UV-curable hyperbranched polyester acrylates. J. Coatings Technol. Res. 2019. [Google Scholar] [CrossRef]
- Cousinet, S.; Ghadban, A.; Fleury, E.; Lortie, F.; Pascault, J.P.; Portinha, D. Toward replacement of styrene by bio-based methacrylates in unsaturated polyester resins. Eur. Polym. J. 2015, 67, 539–550. [Google Scholar] [CrossRef]
- Lima, M.S.; Costa, C.S.M.F.; Coelho, J.F.J.; Fonseca, A.C.; Serra, A.C. A simple strategy toward the substitution of styrene by sobrerol-based monomers in unsaturated polyester resins. Green Chem. 2018, 20, 4880–4890. [Google Scholar] [CrossRef]
- Lee, M.-H.; Chen, J.-R.; Das, M.; Hsieh, T.-F.; Shu, C.-M. Thermokinetic parameter evaluation by DSC and TAM III along with accountability of mass loss by TG from the thermal decomposition analyses of benzoyl peroxide. J. Therm. Anal. Calorim. 2015, 122, 1143–1150. [Google Scholar] [CrossRef]
- Tseng, J.-M.; Chang, Y.-Y.; Su, T.-S.; Shu, C.-M. Study of thermal decomposition of methyl ethyl ketone peroxide using DSC and simulation. J. Hazard. Mater. 2007, 142, 765–770. [Google Scholar] [CrossRef]
- Martin, J.L. Kinetic analysis of two DSC peaks in the curing of an unsaturated polyester resin catalyzed with methylethylketone peroxide and cobalt octoate. Polym. Eng. Sci. 2007, 47, 62–70. [Google Scholar] [CrossRef]
- Martín, J.L. Kinetic analysis of an asymmetrical DSC peak in the curing of an unsaturated polyester resin catalysed with MEKP and cobalt octoate. Polymer (Guildf.) 1999, 40, 3451–3462. [Google Scholar] [CrossRef]
- Dupuy, J.; Adami, J.; Maazouz, A.; Sobotka, V.; Delaunay, D. Kinetic modeling of an unsaturated polyester resin using two complementary techniques: Near infrared spectroscopy and heat flux sensors. Polym. Eng. Sci. 2005, 45, 846–856. [Google Scholar] [CrossRef]
- Hong, C.M.; Wang, X.J.; Kong, P.; Pan, Z.G.; Wang, X.Y. Effect of succinic acid on the shrinkage of unsaturated polyester resin. J. Appl. Polym. Sci. 2015, 132, 1–9. [Google Scholar] [CrossRef]
- Salla, J.M.; Ramis, X. A kinetic study of the effect of three catalytic systems on the curing of an unsaturated polyester resin. J. Appl. Polym. Sci. 1994, 51, 453–462. [Google Scholar] [CrossRef]
- Avella, M.; Martuscelli, E.; Mazzola, M. Kinetic study of the cure reaction of unsaturated polyester resins. J. Therm. Anal. 1985, 30, 1359–1366. [Google Scholar] [CrossRef]
- Ganglani, M.; Carr, S.H.; Torkelson, J.M. Influence of cure via network structure on mechanical properties of a free-radical polymerizing thermoset. Polymer (Guildf.) 2002, 43, 2747–2760. [Google Scholar] [CrossRef]
- Li, Y. Wood-Polymer Composites. In Advances in Composite Materials: Analysis of Natural and Man-Made Materials; Tesinova, P., Ed.; InTech: Rijeka, Croatia, 2011; p. 285. ISBN 978-953-307-449-8. [Google Scholar]
- Bansal, R.K.; Mittal, J.; Singh, P. Thermal stability and degradation studies of polyester resins. J. Appl. Polym. Sci. 1989, 37, 1901–1908. [Google Scholar] [CrossRef]
- Penczek, P.; Czub, P.; Pielichowski, J. Unsaturated polyester resins: Chemistry and technology. In Crosslinking in Materials Science; Advances in Polymer Science; Springe: Berlin/Heidelberg, Germany, 2005; Volume 184, pp. 1–95. [Google Scholar]
- Rodriguez, E.L. The effect of free radical initiators and fillers on the cure of unsaturated polyester resins. Polym. Eng. Sci. 1991, 31, 1022–1028. [Google Scholar] [CrossRef]
- Rouxhet, P.G.; Misselyn-Bauduin, A.M.; Ahimou, F.; Genet, M.J.; Adriaensen, Y.; Desille, T.; Bodson, P.; Deroanne, C. XPS analysis of food products: Toward chemical functions and molecular compounds. Surf. Interface Anal. 2008, 40, 718–724. [Google Scholar] [CrossRef]
- Biesinger, M. X-ray Photoelectron Spectroscopy (XPS) Reference Pages. Available online: http://www.xpsfitting.com (accessed on 28 February 2020).
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database; Wiley: New York, NY, USA, 1992; ISBN 0471935921. [Google Scholar]
- Louette, P.; Bodino, F.; Pireaux, J.-J. Poly(ethylene succinate) (PESU) XPS Reference Core Level and Energy Loss Spectra. Surf. Sci. Spectra 2005, 12, 144–148. [Google Scholar] [CrossRef]
- Patel, D.I.; O’Tani, J.; Bahr, S.; Dietrich, P.; Meyer, M.; Thißen, A.; Linford, M.R. Ethylene glycol, by near-ambient pressure XPS. Surf. Sci. Spectra 2019, 26, 024007. [Google Scholar] [CrossRef]
- Nerantzaki, M.; Filippousi, M.; Van Tendeloo, G.; Terzopoulou, Z.; Bikiaris, D.; Goudouri, O.M.; Detsch, R.; Grüenewald, A.; Boccaccini, A.R. Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications. Express Polym. Lett. 2015, 9, 773–789. [Google Scholar] [CrossRef]
- Fu, B.; Yuan, J.; Qian, W.; Shen, Q.; Sun, X.; Hannig, M. Evidence of chemisorption of maleic acid to enamel and hydroxyapatite. Eur. J. Oral Sci. 2004, 112, 362–367. [Google Scholar] [CrossRef]
- Louette, P.; Bodino, F.; Pireaux, J.-J. Poly(acrylic acid) (PAA) XPS Reference Core Level and Energy Loss Spectra. Surf. Sci. Spectra 2005, 12, 22–26. [Google Scholar] [CrossRef]
- Ferreira, J.M.; Trindade, G.F.; Tshulu, R.; Watts, J.F.; Baker, M.A. Dicarboxylic acids analysed by x-ray photoelectron spectroscopy, Part II—Butanedioic acid anhydrous. Surf. Sci. Spectra 2017, 24, 011102. [Google Scholar] [CrossRef] [Green Version]
Sample | MA Feed (eq) | SA Feed (eq) | SA/MA Ratio from 1H NMR | EG (eq) | PEG200 (eq) | Biobased Content (mol%) |
---|---|---|---|---|---|---|
PESM 50-50 | 0.5 | 0.5 | 48-52 | 1.25 | - | 78 |
PESM 40-60 | 0.6 | 0.4 | 42-58 | 1.25 | - | 73 |
PESM 25-75 | 0.75 | 0.25 | 28-72 | 1.25 | - | 67 |
PPEGSM 50-50 | 0.5 | 0.5 | 53-47 | - | 1.25 | 78 |
PPEGSM 40-60 | 0.6 | 0.4 | 44-56 | - | 1.25 | 73 |
PPEGSM 25-75 | 0.75 | 0.25 | 30-70 | - | 1.25 | 67 |
Sample | Mw (g/mol) | Mn (g/mol) | Đ |
---|---|---|---|
PESM 50-50 | 4700 | 1600 | 2.8 |
PESM 40-60 | 5100 | 1700 | 2.9 |
PESM 25-75 | 4600 | 2050 | 2.2 |
PPEGSM 50-50 | 5600 | 2100 | 2.7 |
PPEGSM 40-60 | 6600 | 2700 | 2.4 |
PPEGSM 25-75 | 9700 | 3600 | 2.7 |
Isothermal (°C) | Time (min) | |||
---|---|---|---|---|
PPEGSM 25-75 | PESM 50-50 | |||
Co(II) 3 wt%, MEKP 1 wt% | Co(II) 3 wt%, MEKP 3 wt% | Co(II) 3 wt%, MEKP 5 wt% | Co(II) 1 wt%, MEKP 1 wt% | |
50 | - | 18 | 20 | - |
60 | 18.2 | 13.7 | 11.1 | 250 |
70 | 14.7 | 8.8 | 6 | 49 |
80 | 9.4 | 6.2 | 4.8 | 35 |
90 | 4 | 4.45 | - | 15 |
Sample | Td,2% (°C) | Td,5% (°C) | Td,max (°C) | R600 (%) |
---|---|---|---|---|
PESM 50-50 | 219 | 278 | 433 | 12.8 |
PESM 40-60 | 181 | 270 | 440 | 9.3 |
PESM 25-75 | 216 | 275 | 431 | 12.1 |
PPEGSM 50-50 | 154 | 266 | 431 | 8.4 |
PPEGSM 40-60 | 202 | 266 | 426 | 9.2 |
PPEGSM 25-75 | 195 | 268 | 425 | 11.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, L.; Malletzidou, L.; Patsiaoura, D.; Magaziotis, A.; Psochia, E.; Terzopoulou, Z.; Chrissafis, K.; Markessini, C.; Papadopoulou, E.; Bikiaris, D.N. Synthesis and Characterization of Unsaturated Succinic Acid Biobased Polyester Resins. Appl. Sci. 2021, 11, 896. https://doi.org/10.3390/app11030896
Papadopoulos L, Malletzidou L, Patsiaoura D, Magaziotis A, Psochia E, Terzopoulou Z, Chrissafis K, Markessini C, Papadopoulou E, Bikiaris DN. Synthesis and Characterization of Unsaturated Succinic Acid Biobased Polyester Resins. Applied Sciences. 2021; 11(3):896. https://doi.org/10.3390/app11030896
Chicago/Turabian StylePapadopoulos, Lazaros, Lamprini Malletzidou, Dimitra Patsiaoura, Andreas Magaziotis, Eleni Psochia, Zoi Terzopoulou, Konstantinos Chrissafis, Charles Markessini, Electra Papadopoulou, and Dimitrios N. Bikiaris. 2021. "Synthesis and Characterization of Unsaturated Succinic Acid Biobased Polyester Resins" Applied Sciences 11, no. 3: 896. https://doi.org/10.3390/app11030896
APA StylePapadopoulos, L., Malletzidou, L., Patsiaoura, D., Magaziotis, A., Psochia, E., Terzopoulou, Z., Chrissafis, K., Markessini, C., Papadopoulou, E., & Bikiaris, D. N. (2021). Synthesis and Characterization of Unsaturated Succinic Acid Biobased Polyester Resins. Applied Sciences, 11(3), 896. https://doi.org/10.3390/app11030896