Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chitosan-HNa Films
2.3. Composition and Structural Characterization of PEGDE Crosslinked CHT/HNa Films
2.3.1. Fourier-Transform-Infrared Spectroscopy (FTIR)
2.3.2. Raman Spectroscopy
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. X-ray Diffraction (XRD)
2.4. Surface Properties of PEGDE Crosslinked CHT/HNa Films
2.4.1. Scanning Electron Microscopy (SEM)
2.4.2. X-ray Photoelectron Spectroscopy (XPS)
2.4.3. Atomic Force Microscopy (AFM)
2.4.4. Contact Angles
2.5. Biological Studies
2.5.1. Cell Viability Assay
2.5.2. Antimicrobial Activity Assays
3. Results and Discussion
3.1. Composition and Structure of CHT Films
3.1.1. FTIR Spectroscopy
3.1.2. Raman Spectroscopy
3.1.3. Thermogravimetric Analysis (TGA)
3.1.4. X-ray Diffraction (XRD)
3.2. Surface Properties of Crosslinked CHT
3.2.1. X-ray Photoelectron Spectroscopy (XPS)
3.2.2. Surface Topography by AFM
3.2.3. Measurement of Contact Angle
3.3. Cell Viability and Proliferation Studies
Cellular Adhesion by Scanning Electron Microscopy (SEM)
3.4. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Britto, D.; Campana-Filho, S.P. Kinetics of the thermal degradation of chitosan. Thermochim. Acta 2007, 465, 73–82. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, P.; Kieft, T.L.; Ryan, S.J.; Baker, S.M.; Wiesmann, W.P.; Rogelj, S. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomater. 2010, 6, 2562–2571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, A.M.; Abou-yousef, H.; El-sayed, S.M.; Kamel, S. Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int. J. Biol. Macromol. 2015, 76, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.A.; Orlandini, F.; Pacetti, D.; Boselli, E.; Frega, N.G.; Tosi, G.; Muzzarelli, C. Chitosan taurocholate capacity to bind lipids and to undergo enzymatic hydrolysis: An in vitro model. Carbohydr. Polym. 2006, 66, 363–371. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, L.; Yu, Q. Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem. Biophys. Res. Commun. 2004, 317, 414–420. [Google Scholar] [CrossRef]
- Salah, R.; Michaud, P.; Mati, F.; Harrat, Z.; Lounici, H.; Abdi, N.; Drouiche, N.; Mameri, N. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int. J. Biol. Macromol. 2013, 52, 333–339. [Google Scholar] [CrossRef]
- Mujtaba, M.; Morsi, R.E.; Kerch, G.; Elsabee, M.Z.; Kaya, M.; Labidi, J.; Khawar, K.M. Current advancements in chitosan-based film production for food technology; A review. Int. J. Biol. Macromol. 2019, 121, 889–904. [Google Scholar] [CrossRef]
- Walimbe, T.; Panitch, A.; Sivasankar, P.M.; Lafayette, W. A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering. J. Voice 2017, 31, 416–423. [Google Scholar] [CrossRef]
- Mathews, S.; Mathew, S.A.; Gupta, P.K.; Bhonde, R.; Totey, S. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Tissue Eng. Regen. Med. 2014, 8, 143–152. [Google Scholar] [CrossRef]
- Chircov, C.; Grumezescu, A.M.; Bejenaru, L.E. Hyaluronic acid-based scaffolds for tissue engineering. Rom. J. Morphol. Embryol. 2018, 59, 71–76. [Google Scholar] [PubMed]
- Croll, T.I.; Connor, A.J.O.; Stevens, G.W.; Cooper-white, J.J. A Blank Slate? Layer-by-Layer Deposition of Hyaluronic Acid and Chitosan onto Various Surfaces. Biomacromolecules 2006, 7, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Nasti, A.; Zaki, N.M.; De Leonardis, P.; Ungphaiboon, S.; Sansongsak, P.; Rimoli, M.G.; Tirelli, N. Chitosan/TPP and Chitosan/TPP-hyaluronic Acid Nanoparticles: Systematic Optimisation of the Preparative Process and Preliminary Biological Evaluation. Pharm. Res. 2009, 26, 1918–1930. [Google Scholar] [CrossRef] [PubMed]
- Yamane, S.; Iwasaki, N.; Kasahara, Y.; Harada, K.; Majima, T.; Monde, K.; Nishimura, S.; Minami, A. Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J. Biomed. Mater. Res. A 2007, 81, 586–593. [Google Scholar] [CrossRef]
- Mohandas, A.; Anisha, B.S.; Chennazhi, K.P.; Jayakumar, R. Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surf. B Biointerfaces 2015, 127, 105–113. [Google Scholar] [CrossRef]
- Kuotlusy, T.; Oktay, B.; Apohan, N.K.; Süleymanoğlu, M.; Kuruca, S.E. Chitosan-co-Hyaluronic acid porous cryogels and their application in tissue engineering. Int. J. Biol. Macromol. 2017, 103, 366–378. [Google Scholar] [CrossRef]
- Tan, H.; Chu, C.R.; Payne, K.A.; Marra, K.G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009, 30, 2499–2506. [Google Scholar] [CrossRef] [Green Version]
- Zakeri, A.; Mirzaei, E.; Ghasemi, Y.; Amin, M.; Kouhbanani, J. Hyaluronic acid coated electrospun chitosan-based nano fi bers prepared by simultaneous stabilizing and coating. Int. J. Biol. Macromol. 2019, 138, 403–411. [Google Scholar]
- Muzzio, N.E.; Pasquale, M.A.; Diamanti, E.; Gregurec, D.; Moro, M.M.; Azzaroni, O.; Moya, S.E. Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria. Mater. Sci. Eng. C 2017, 80, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Thuy, D.; Pham, N.; Folarin, S. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf. B Biointerfaces 2020, 185, 110627. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, J. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym. 2003, 54, 527–530. [Google Scholar] [CrossRef]
- Zou, P.; Yang, X.; Wang, J.; Li, Y.; Yu, H.; Zhang, Y.; Liu, G. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem. 2016, 190, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ye, B.; Lv, Y.; Zhang, Q. Preparing antibacterial and in-situ formable double crosslinking chitosan/hyaluronan composite hydrogels. Mater. Lett. 2019, 254, 17–20. [Google Scholar] [CrossRef]
- Rodríguez López, A.d.L.; Lee, M.R.; Ortiz, B.J.; Gastfriend, B.D.; Whitehead, R.; Lynn, D.M.; Palecek, S.P. Preventing S. aureus biofilm formation on titanium surfaces by the release of antimicrobial β-peptides from polyelectrolyte multilayers. Acta Biomater. 2019, 93, 50–62. [Google Scholar] [CrossRef]
- Vale, A.C.; Pereira, P.; Barbosa, A.M.; Torrado, E.; Mano, J.F.; Alves, N.M. Antibacterial free-standing polysaccharide composite films inspired by the sea. Int. J. Biol. Macromol. 2019, 133, 933–944. [Google Scholar] [CrossRef]
- Li, X.F.; Feng, X.Q.; Yang, S.; Fu, G.Q.; Wang, T.P.; Su, Z.X. Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydr. Polym. 2010, 79, 493–499. [Google Scholar] [CrossRef]
- Yu, W.; Koc, J.; Finlay, J.A.; Clarke, J.L.; Clare, A.S.; Rosenhahn, A.; Yu, W.; Koc, J.; Finlay, J.A.; Clarke, J.L.; et al. Layer-by-layer constructed hyaluronic acid/chitosan multilayers as antifouling and fouling-release coatings. Biointerphases 2019, 14, 051002. [Google Scholar] [CrossRef] [Green Version]
- Chuc-Gamboa, M.G.; Vargas-Coronado, R.F.; Cervantes-Uc, J.M.; Cauich-Rodríguez, J.V.; Escobar-García, D.M.; Pozos-Guillén, A.; del Barrio, J.S.R. The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan. Polymers 2019, 11, 1830. [Google Scholar] [CrossRef] [Green Version]
- Deepthi, S.; Jeevitha, K.; Nivedhitha Sundaram, M.; Chennazhi, K.P.; Jayakumar, R. Chitosan-hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem. Eng. J. 2015, 260, 478–485. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Ren, L.; Yin, S.; Ge, J.; Gao, Q.; Luxbacher, T.; Luo, S. A study on the performance of hyaluronic acid immobilized chitosan film. Biomed. Mater. 2009, 4, 035009. [Google Scholar] [CrossRef]
- Hwang, H.D.; Cho, H.J.; Balakrishnan, P.; Chung, C.W.; Yoon, I.S.; Oh, Y.K.; Byun, Y.; Kim, D.D. Cross-linked hyaluronic acid-based flexible cell delivery system: Application for chondrogenic differentiation. Colloids Surf. B Biointerfaces 2012, 91, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Peschel, D.; Helm, J.; Groth, T.; Fischer, S. FT Raman investigation of novel chitosan sulfates exhibiting osteogenic capacity. Carbohydr. Polym. 2011, 83, 60–65. [Google Scholar] [CrossRef]
- Aryaei, A.; Jayatissa, A.H.; Jayasuriya, A.C. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films. J. Biomed. Mater. Res. Part A 2014, 102A, 2704–2712. [Google Scholar] [CrossRef] [PubMed]
- Synytsya, A.; Synytsya, A.; Alexa, P.; Wagner, R.; Davídková, M.; Volka, K. Raman spectroscopic study on sodium hyaluronate: An effect of proton and γ irradiation. J. Raman Spectrosc. 2011, 42, 544–550. [Google Scholar] [CrossRef]
- Essendoubi, M.; Gobinet, C.; Reynaud, R.; Angiboust, J.F.; Manfait, M.; Piot, O. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Ski. Res. Technol. 2016, 22, 55–62. [Google Scholar] [CrossRef]
- Réeff, J.; Gaignaux, A.; Goole, J.; De Vriese, C.; Amighi, K. New sustained-release intraarticular gel formulations based on monolein for local treatment of arthritic diseases. Drug Dev. Ind. Pharm. 2013, 39, 1731–1741. [Google Scholar]
- Naito, P.K.; Ogawa, Y.; Kimura, S.; Iwata, T.; Wada, M. Crystal transition from hydrated chitosan and chitosan/monocarboxylic acid complex to anhydrous chitosan investigated by X-ray diffraction. J. Polym. Sci. Part. B Polym. Phys. 2015, 53, 1065–1069. [Google Scholar] [CrossRef]
- Mao, S.; Shuai, X.; Unger, F.; Simon, M.; Bi, D.; Kissel, T. The depolymerization of chitosan: Effects on physicochemical and biological properties. Int. J. Pharm. 2004, 281, 45–54. [Google Scholar] [CrossRef]
- Sheehan, J.K.; Atkins, E.D.T. X-ray fibre diffraction study of conformational changes in hyaluronate induced in the presence of sodium, potassium and calcium cations. Int. J. Biol. Macromol. 1983, 5, 215–221. [Google Scholar] [CrossRef]
- Lee, C.-M.; Yang, S.-W.; Jung, S.-C.; Kim, B.-H. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering. J. Nanosci. Nanotechnol. 2017, 17, 2747–2750. [Google Scholar] [CrossRef]
- Bettelheim, F.A. Crystalline Sodium Hyaluronate. Nature 1958, 182, 1301–1302. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.D.; Abueva, C.; Kim, B.; Lee, B.T. Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydr. Polym. 2015, 115, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, K.; Sionkowska, A.; Grabska, S.; Kaczmarek, B.; Michalska, M. The miscibility of collagen/hyaluronic acid/chitosan blends investigated in dilute solutions and solids. J. Mol. Liq. 2016, 220, 726–730. [Google Scholar] [CrossRef]
- Romero-Vargas Castrillón, S.; Lu, X.; Shaffer, D.L.; Elimelech, M. Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control. J. Memb. Sci. 2014, 450, 331–339. [Google Scholar] [CrossRef]
- Li, L.; Wang, N.; Jin, X.; Deng, R.; Nie, S.; Sun, L.; Wu, Q.; Wei, Y.; Gong, C. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 2014, 35, 3903–3917. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Sionkowska, A.; Łukowicz, K.; Maria Osyczka, A. The cells viability study on the composites of chitosan and collagen with glycosaminoglycans isolated from fish skin. Mater. Lett. 2017, 206, 166–168. [Google Scholar] [CrossRef]
- Chen, C.H.; Chen, S.H.; Mao, S.H.; Tsai, M.J.; Chou, P.Y.; Liao, C.H.; Chen, J.P. Injectable thermosensitive hydrogel containing hyaluronic acid and chitosan as a barrier for prevention of postoperative peritoneal adhesion. Carbohydr. Polym. 2017, 173, 721–731. [Google Scholar] [CrossRef]
- Ström, A.; Larsson, A.; Okay, O. Preparation and physical properties of hyaluronic acid-based cryogels. J. Appl. Polym. Sci. 2015, 132, 1–11. [Google Scholar] [CrossRef]
- Casimiro, M.H.; Gomes, S.R.; Rodrigues, G.; Leal, J.P.; Ferreira, L.M. Chitosan/Poly(vinylpyrrolidone) Matrices Obtained by Gamma-Irradiation for Skin Scaffolds: Characterization and Preliminary Cell Response Studie. Materials 2018, 11, 2535. [Google Scholar] [CrossRef] [Green Version]
- Bellich, B.; D’Agostino, I.; Semeraro, S.; Gamini, A.; Cesàro, A. “The Good, the Bad and the Ugly” of Chitosans Barbara. Mar. Drugs 2016, 14, 99. [Google Scholar] [CrossRef] [Green Version]
- Raafat, D.; Sahl, H. Chitosan and its antimicrobial potential—A critical literature survey. Microb. Biotechnol. 2009, 2, 186–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gritsch, L.; Lovell, C.; Goldmann, W.H.; Boccaccini, A.R. Fabrication and characterization of copper (II)-chitosan complexes as antibiotic-free antibacterial biomaterial. Carbohydr. Polym. 2018, 179, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.; Fang, J.; Borca-tasciuc, D.; Worobo, R.; Moraru, C.I.; Polytechnic, R. The Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces. Appl. Environ. Microbiol 2013, 79, 2703–2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, F.; Koo, H.; Ren, D. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation. J. Dent. Res. 2015, 94, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Lüdecke, C.; Roth, M.; Yu, W.; Horn, U.; Bossert, J.; Jandt, K.D. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids Surf. B Biointerfaces 2016, 145, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ercan, B.; Sun, L.; Ziemer, K.S.; Webster, T.J. Understanding the Role of Polymer Surface Nanoscale Topography on Inhibiting Bacteria Adhesion and Growth. ACS Biomater. Sci. Eng. 2016, 2, 122–130. [Google Scholar] [CrossRef]
- Park, S.; Marsh, K.S.; Dawson, P. Application of chitosan-incorporated LDPE film to sliced fresh red meats for shelf life extension. Meat Sci. 2010, 85, 493–499. [Google Scholar] [CrossRef]
- Tsai, G.; Su, W. Antibacterial Activity of Shrimp Chitosan against Escherichia coli. J. Food Prot. 1999, 62, 239–243. [Google Scholar] [CrossRef]
- Hernandez-montelongo, J.; Lucchesi, E.G.; Gonzalez, I.; Macedo, W.A.A. Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces 2016, 141, 499–506. [Google Scholar] [CrossRef]
- Vasconcellos, F.C.; Swiston, A.J.; Beppu, M.M.; Cohen, R.E.; Rubner, M.F. Bioactive Polyelectrolyte Multilayers: Hyaluronic Acid Mediated B Lymphocyte Adhesion. Biomacromolecules 2010, 11, 2407–2414. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Fahmy, M.M. Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int. J. Mol. Sci. 2012, 13, 11194–11209. [Google Scholar] [CrossRef] [PubMed]
- Perumal, A.B.; Sellamuthu, P.S.; Nambiar, R.B.; Sadiku, E.R. Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl. Surf. Sci. 2018, 449, 591–602. [Google Scholar] [CrossRef]
Films | % | CHT mg | HNa mg | Crosslinking Agent µL |
---|---|---|---|---|
Chitosan- Sodium Hyaluronate | 15 | 200 | 30 | - |
Chitosan- Sodium Hyaluronate | 30 | 200 | 60 | - |
Chitosan- Sodium Hyaluronate-PEGDE 1 | 15 | 200 | 30 | 50 |
Chitosan- Sodium Hyaluronate-PEGDE 1 | 30 | 200 | 60 | 50 |
Chitosan- Sodium Hyaluronate-PEGDE 2 | 15 | 200 | 30 | 100 |
Chitosan- Sodium Hyaluronate-PEGDE 2 | 30 | 200 | 60 | 100 |
Chitosan- Sodium Hyaluronate-PEGDE 3 | 15 | 200 | 30 | 150 |
Chitosan- Sodium Hyaluronate-PEGDE 3 | 30 | 200 | 60 | 150 |
Chitosan- Sodium Hyaluronate-GA | 15 | 200 | 30 | 150 |
Chitosan- Sodium Hyaluronate-GA | 30 | 200 | 60 | 150 |
Films | Td (°C) | T (°C) at 50% of Weight Loss | ||||
---|---|---|---|---|---|---|
CHT | 65 | 297 | 351 | |||
HNa 15 % | HNa 30% | HNa 15% | HNa 30% | |||
Td1 | Td2 | Td1 | Td2 | |||
CHT-HA | 68 | 386 | 60 | 292 | 295 | 360 |
CHT-HA-PEGDE 1 | 70 | 344 | 63 | 285 | 295 | 349 |
CHT-HA-PEGDE 2 | 70 | 348 | 63 | 295 | 290 | 340 |
CHT-HA-PEGDE 3 | 64 | 338 | 62 | 300 | 298 | 340 |
CHT-HA-GA | 56 | 354 | 61 | 272 | 276 | 358 |
CrI% | ||
---|---|---|
Films | ||
CHT | 64.17 | |
15% | 30% | |
CHT/HNa | 60.76 | 46.05 |
CHT-HNA-PEGDE 1 | 42.12 | 43.24 |
CHT-HNa-PEGDE 2 | 31.56 | 46.66 |
CHT-HNa-PEGDE 3 | 19.5 | 27.86 |
CHT-HNa-GA | 25.66 | 16.88 |
HNa | %C | %O | %N | %Na | %Si | %Ca | |
---|---|---|---|---|---|---|---|
CHT | 70.13 ± 1 | 22.23 ± 2 | 4.64 ± 0.6 | - | 1.27 ± 1 | 1.74 ± 0.7 | |
CHT/HNa | 15% | 69.14 ± 3 | 24.67 ± 2 | 4.79 ± 2 | 0.27 ± 0.2 | 0.88 ± 0.8 | 0.25 ± 0.1 |
30% | 76.6 ± 5 | 18.4 ± 1 | 3 ± 0.2 | 1.26 ± 0.5 | 0.74 ± 0.3 | - | |
CHT-PEGDE1 | 15% | 76.2 ± 2 | 20.56 ± 1 | 2.72 ± 0.9 | 0.52 ± 0.4 | - | - |
30% | 74.93 ± 4 | 20.11 ± 2 | 3.21 ± 0.8 | 0.73 ± 0.1 | 1.02 ± 0.9 | - | |
CHT-PEGDE2 | 15% | 69.3 ± 1 | 25.67 ± 3 | 3.7 ± 0.9 | 0.8 ± 0.2 | - | 0.55 ± 0.2 |
30% | 75.22 ± 2 | 22 ± 1 | 1.85 ± 1 | 0.93 ± 0.3 | - | - | |
CHT-PEGDE3 | 15% | 66 ± 5 | 27.8 ± 3 | 4.10 ± 1 | 0.83 ± 0.2 | 1.27 ± 1 | - |
30% | 74 ± 3 | 20 ± 2 | 3.9 ± 1 | 0.96 ± 0.1 | 0.79 ± 0.3 | 0.35 ± 0.5 | |
CHT-GA | 15% | 75.5 ± 1 | 21.2 ± 2 | 2.62 ± 0.8 | 0.68 ± 0.2 | - | - |
30% | 75 ± 2 | 22 ± 3 | 3 ± 1 | - | - | - |
Ra (nm) | Contact Angle (°) | |||||
---|---|---|---|---|---|---|
Films | H2O | DMEM | H2O | DMEM | ||
CHT | 45.8 ± 5 | 62.9 ± 3 | 72 ± 4 | |||
15% | 30% | 15% | 30% | |||
CHT-HNa | 64.7 + 7.3 | 31.7 ± 2.6 | 73° | 74° | 74° | 66° |
CHT-HNa-PEGDE1 | 85.3 ± 9.6 | 106.2 ± 8.9 | 66° | 52° | 52° | 55° |
CHT-HNa-PEGDE2 | 56.8 ± 5.8 | 87.8 ± 6.9 | 60° | 56° | 56° | 47° |
CHT-HNa-PEGDE3 | 61.2 ± 5.2 | 134.3 ± 14.2 | 51° | 54° | 54° | 44° |
CHT-HNa-GA | 44.6 + 5.9 | 52.6 ± 7.2 | 68° | 42° | 42° | 18° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuc-Gamboa, M.G.; Cámara Perera, C.M.; Aguilar Ayala, F.J.; Vargas-Coronado, R.F.; Cauich-Rodríguez, J.V.; Escobar-García, D.M.; Sánchez-Vargas, L.O.; Pacheco, N.; San Román del Barrio, J. Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films. Appl. Sci. 2021, 11, 1267. https://doi.org/10.3390/app11031267
Chuc-Gamboa MG, Cámara Perera CM, Aguilar Ayala FJ, Vargas-Coronado RF, Cauich-Rodríguez JV, Escobar-García DM, Sánchez-Vargas LO, Pacheco N, San Román del Barrio J. Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films. Applied Sciences. 2021; 11(3):1267. https://doi.org/10.3390/app11031267
Chicago/Turabian StyleChuc-Gamboa, Martha Gabriela, Carolina María Cámara Perera, Fernando Javier Aguilar Ayala, Rossana Faride Vargas-Coronado, Juan Valerio Cauich-Rodríguez, Diana María Escobar-García, Luis Octavio Sánchez-Vargas, Neith Pacheco, and Julio San Román del Barrio. 2021. "Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films" Applied Sciences 11, no. 3: 1267. https://doi.org/10.3390/app11031267
APA StyleChuc-Gamboa, M. G., Cámara Perera, C. M., Aguilar Ayala, F. J., Vargas-Coronado, R. F., Cauich-Rodríguez, J. V., Escobar-García, D. M., Sánchez-Vargas, L. O., Pacheco, N., & San Román del Barrio, J. (2021). Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films. Applied Sciences, 11(3), 1267. https://doi.org/10.3390/app11031267