Determination of Zenith Angle Dependence of Incoherent Cosmic Ray Muon Flux Using Smartphones of the CREDO Project
Abstract
:1. Introduction
2. Registration and Analysis of the Smartphone Recordings
2.1. Determination of Noise
2.2. The Elongation Axis
2.3. The Length of the Track
2.4. Zenith Angle of the Particle Track
2.5. The Track Length Determination Algorithms
- (a)
- acceptable gaps in the histogram tracks are of length up to 4 px (as shown in Figure 2) but exactly one track is seen in the picture,
- (b)
- as above up to 4 px gaps are accepted but ’multiple track’ events are included.
- (c)
- allowing events with large gap (up to 5 px) in the track,
- (d)
- only the small gap (only below 3 px) is acceptable.
- (e)
- only 1 px long gaps, at most, are accepted,
- (f)
- no gaps at all are allowed.
3. Results
4. Summary
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neronov, A.; Malyshev, D.; Semikoz, D.V. Cosmic-ray spectrum in the local Galaxy. Astron. Astrophys. 2017, 606, A22. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muniz, J.; Batista, R.A.; Hahn, S.; et al. Measurement of the cosmic-ray energy spectrum above 2.5 × 1018 eV using the Pierre Auger Observatory. Phys. Rev. D 2020, 102, 062005. [Google Scholar] [CrossRef]
- Hörandel, J.R. Models of the knee in the energy spectrum of cosmic rays. Astropart. Phys. 2004, 21, 241–265. [Google Scholar] [CrossRef]
- Bell, A.R. Cosmic ray acceleration. Astropart. Phys. 2013, 43, 56–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S. The Origin of Cosmic Rays from Supernova Remnants. Chin. Astron. Astrophys. 2020, 44, 1–31. [Google Scholar]
- Batista, R.A.; Biteau, J.; Bustamante, M.; Dolag, K.; Engel, R.; Fang, K.; Kampert, K.-H.; Kostunin, D.; Mostafa, M.; Murase, K.; et al. Open Questions in Cosmic-Ray Research at Ultrahigh Energies. Front. Astron. Space Sci. 2019, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Góra, D.; Almeida Cheminant, C.; Alvarez-Castillo, D.; Bratek, Ł.; Dhital, N.; Duffy, A.R.; Homola, P.; Jagoda, P.; Jałocha, J.; Kasztelan, M.; et al. Cosmic-Ray Extremely Distributed Observatory: Status and Perspectives. Universe 2018, 4, 2218. [Google Scholar]
- Homola, P.; Bhatta, G.; Bratek, Ł.; Bretz, T.; Almeida Cheminant, K.; Alvarez-Castillo, D.; Dhital, N.; Devine, J.; Góra, D.; Jagoda, P.; et al. Search for Extensive Photon Cascades with the Cosmic-Ray Extremely Distributed Observatory. CERN Proc. 2018, 1, 289. [Google Scholar]
- Woźniak, K.W.; Almeida-Cheminant, K.; Bratek, Ł.; Alvarez Castillo, D.E.; Dhital, N.; Duffy, A.R.; Góra, D.; Hnatyk, B.; Homola, P.; Jagoda, P.; et al. Detection of Cosmic-Ray Ensembles with CREDO. EPJ Web Conf. 2019, 208, 15006. [Google Scholar]
- Bibrzycki, Ł.; Burakowski, D.; Homola, P.; Piekarczyk, M.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Tursunov, A.; Hnatyk, B.; Castillo; et al. Towards A Global Cosmic Ray Sensor Network: CREDO Detector as the First Open-Source Mobile Application Enabling Detection of Penetrating Radiation. Symmetry 2020, 12, 1802. [Google Scholar] [CrossRef]
- Whiteson, D.; Mulhearn, M.; Shimmin, C.; Cranmer, K.; Brodie, K.; Burns, D. Searching for ultra-high energy cosmic rays with smartphones. Astropart. Phys. 2016, 79, 1. [Google Scholar] [CrossRef] [Green Version]
- Meehan, M.; Bravo, S.; Campos, F.; Ruggles, T.; Schneider, C.; Vandenbroucke, J.; Winter, M. The particle detector in your pocket: The Distributed Electronic Cosmic-ray Observatory. In Proceedings of the ICRC 2017, Busan, Korea, 10–20 July 2017; p. 375. [Google Scholar]
- Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Plewa, M.; Ruggles, T.; Schultz, D.; Peacock, J.; Simons, A.L. Detecting particles with cell phones: The Distributed Electronic Cosmic-ray Observatory. In Proceedings of the ICRC 2015, Hague, The Netherlands, 30 July–6 August 2015; p. 691. [Google Scholar]
- Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A. Muon Trigger for Mobile Phones. J. Phys. Conf. Ser. 2017, 898, 032048. [Google Scholar] [CrossRef]
- Davoudifar, P.; Bagheri, Z. Determination of local muon flux using astronomical Charge Coupled Device. J. Phys. Nucl. Part. Phys. 2020, 47, 035204. [Google Scholar] [CrossRef]
- Groom, D. Cosmic rays and other nonsense in astronomical CCD imagers. Exp. Astron. 2002, 14, 45. [Google Scholar] [CrossRef]
- Unger, M.; Farrar, G. (In)Feasability of Studying Ultra-High-Energy Cosmic Rays with Smartphones. arXiv 2015, arXiv:1505.04777. [Google Scholar]
- Antoni, T.; Apel, W.D.; Badea, F.; Bekk, K.; Bercuci, A.; Blumer, H.; Bozdog, H.; Brancus, I.M.; Buttner, C.; Chilingarian, A.; et al. The cosmic-ray experiment KASCADE. Nucl. Instrum. Methods Phys. Res. A 2003, 513, 490. [Google Scholar] [CrossRef]
- Ogio, S.; Kakimoto, F.; Kurashina, Y.; Burgoa, O.; Harada, D.; Tokuno, H.; Yoshii, H.; Morizawa, A.; Gotoh, E.; Nakatani, H.; et al. The Energy Spectrum and the Chemical Composition of Primary Cosmic Rays with Energies from 1014 to 1016 eV. Astrophys. J. 2004, 612, 268. [Google Scholar] [CrossRef]
- Gupta, S.K.; Aikawa, Y.; Gopalakrishnan, N.V.; Hayashi, Y.; Ikeda, N.; Ito, N.; Jain, A.; John, A.V.; Karthikeyan, S.; Kawakami, S.; et al. GRAPES-3—A high-density air shower array for studies on the structure in the cosmic-ray energy spectrum near the knee. Nucl. Instrum. Methods Phys. Res. A 2005, 540, 311. [Google Scholar] [CrossRef]
- Wang, D.-R.; Wang, X.-P.; Li, C.-Z.; Chen, Y.-B.; Lin, J.-F.; Chang, C.-C.; Zhao, J.-W.; Jiang, Y.-Y.; Xu, Y.-L.; Tang, S.-Q.; et al. The measurement of the cosmic ray muon zenith angle distribution with on-line microcomputer. Chin. Phys. C 1983, 7, 135. [Google Scholar]
- Franke, R.; Holler, M.; Kaminsky, B.; Karg, T.; Prokoph, H.; Schönwald, A.; Schwerdt, C.; Stößl, A.; Walter, M. CosMO—A Cosmic Muon Observer Experiment for Students. In Proceedings of the ICRC2013, Rio de Janeiro, Brazil, 2–9 July 2013; p. 1084. [Google Scholar]
- Hutten, M.; Karg, T.; Schwerdt, C.; Steppa, C.; Walter, M. The International Cosmic Day—An Outreach Event for Astroparticle Physics. In Proceedings of the ICRC 2017, Busan, Korea, 10–20 July 2017; p. 406. [Google Scholar]
- Singh, P.; Hedgel, H. Special relativity in the school laboratory: A simple apparatus for cosmic-ray muon detection. Phys. Educ. 2015, 50, 317. [Google Scholar] [CrossRef]
- Greisen, K. Intensity of Cosmic Rays at Low Altitude and the Origin of the Soft Component. Phys. Rev. 1943, 63, 323. [Google Scholar] [CrossRef]
- Rossi, B. Interpretation of Cosmic-Ray Phenomena. Rev. Mod. Phys. 1948, 20, 537. [Google Scholar] [CrossRef]
- Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; et al. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones. J. Instrum. 2016, 11, P04019. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karbowiak, M.; Wibig, T.; Alvarez Castillo, D.; Beznosko, D.; Duffy, A.R.; Góra, D.; Homola, P.; Kasztelan, M.; Niedźwiecki, M. Determination of Zenith Angle Dependence of Incoherent Cosmic Ray Muon Flux Using Smartphones of the CREDO Project. Appl. Sci. 2021, 11, 1185. https://doi.org/10.3390/app11031185
Karbowiak M, Wibig T, Alvarez Castillo D, Beznosko D, Duffy AR, Góra D, Homola P, Kasztelan M, Niedźwiecki M. Determination of Zenith Angle Dependence of Incoherent Cosmic Ray Muon Flux Using Smartphones of the CREDO Project. Applied Sciences. 2021; 11(3):1185. https://doi.org/10.3390/app11031185
Chicago/Turabian StyleKarbowiak, Michał, Tadeusz Wibig, David Alvarez Castillo, Dmitriy Beznosko, Alan R. Duffy, Dariusz Góra, Piotr Homola, Marcin Kasztelan, and Michał Niedźwiecki. 2021. "Determination of Zenith Angle Dependence of Incoherent Cosmic Ray Muon Flux Using Smartphones of the CREDO Project" Applied Sciences 11, no. 3: 1185. https://doi.org/10.3390/app11031185
APA StyleKarbowiak, M., Wibig, T., Alvarez Castillo, D., Beznosko, D., Duffy, A. R., Góra, D., Homola, P., Kasztelan, M., & Niedźwiecki, M. (2021). Determination of Zenith Angle Dependence of Incoherent Cosmic Ray Muon Flux Using Smartphones of the CREDO Project. Applied Sciences, 11(3), 1185. https://doi.org/10.3390/app11031185