The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Disalvo, F.J. Thermoelectric cooling and power generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef]
- Reddy, P.; Jang, S.Y.; Segalman, R.A.; Majumdar, A. Thermoelectricity in molecular junctions. Science 2007, 315, 1568–1571. [Google Scholar] [CrossRef] [PubMed]
- Russ, B.; Glaudell, A.; Urban, J.J.; Chabinyc, M.L.; Segalman, R.A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 16050. [Google Scholar] [CrossRef]
- Hasan, M.N.; Wahid, H.; Nayan, N.; Mohamed Ali, M.S. Inorganic thermoelectric materials: A review. Int. J. Energy Res. 2020, 44, 6170–6222. [Google Scholar] [CrossRef]
- Evangeli, C.; Spiece, J.; Sangtarash, S.; Molina-Mendoza, A.J.; Mucientes, M.; Mueller, T.; Lambert, C.; Sadeghi, H.; Kolosov, O. Nanoscale Thermal Transport in 2D Nanostructures from Cryogenic to Room Temperature. Adv. Electron. Mater. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Chen, H.; Sangtarash, S.; Li, G.; Gantenbein, M.; Cao, W.; Alqorashi, A.; Liu, J.; Zhang, C.; Zhang, Y.; Chen, L.; et al. Exploring the thermoelectric properties of oligo(phenylene-ethynylene) derivatives. Nanoscale 2020, 12, 15150–15156. [Google Scholar] [CrossRef] [PubMed]
- Takaloo, A.V.; Sadeghi, H. Quantum Interference Enhanced Thermoelectricity in Ferrocene Based Molecular Junctions. J. Nanosci. Nanotechnol. 2019, 19, 7452–7455. [Google Scholar] [CrossRef] [PubMed]
- Sangtarash, S.; Sadeghi, H.; Lambert, C.J. Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctions. Phys. Chem. Chem. Phys. 2018, 20, 9630–9637. [Google Scholar] [CrossRef]
- Garner, M.H.; Li, H.; Chen, Y.; Su, T.A.; Shangguan, Z.; Paley, D.W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 2018, 558, 415–419. [Google Scholar] [CrossRef]
- Zotti, L.A.; Bürkle, M.; Pauly, F.; Lee, W.; Kim, K.; Jeong, W.; Asai, Y.; Reddy, P.; Cuevas, J.C. Heat dissipation and its relation to thermopower in single-molecule junctions. New J. Phys. 2014, 16, 015004. [Google Scholar] [CrossRef]
- Lee, W.; Kim, K.; Jeong, W.; Zotti, L.A.; Pauly, F.; Cuevas, J.C.; Reddy, P. Heat dissipation in atomic-scale junctions. Nature 2013, 498, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H. Theory of electron, phonon and spin transport in nanoscale quantum devices. Nanotechnology 2018, 29, 373001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; van der Zee, B.; Alessandri, R.; Sami, S.; Dong, J.; Nugraha, M.I.; Barker, A.J.; Rousseva, S.; Qiu, L.; Qiu, X.; et al. N-type organic thermoelectrics: Demonstration of ZT > 0.3. Nat. Commun. 2020, 11, 5694. [Google Scholar] [CrossRef] [PubMed]
- Al-Galiby, Q.H.; Sadeghi, H.; Algharagholy, L.A.; Grace, I.; Lambert, C. Tuning the thermoelectric properties of metallo-porphyrins. Nanoscale 2016, 8, 2428–2433. [Google Scholar] [CrossRef]
- Sangtarash, S.; Sadeghi, H.; Lambert, C.J. Exploring quantum interference in heteroatom-substituted graphene-like molecules. Nanoscale 2016, 8, 13199–13205. [Google Scholar] [CrossRef]
- Sadeghi, H. Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity. J. Phys. Chem. C 2019, 123, 12556–12562. [Google Scholar] [CrossRef]
- Sangtarash, S.; Sadeghi, H. Radical enhancement of molecular thermoelectric efficiency. Nanoscale Adv. 2020, 2, 1031–1035. [Google Scholar] [CrossRef]
- Mosso, N.; Sadeghi, H.; Gemma, A.; Sangtarash, S.; Drechsler, U.; Lambert, C.; Gotsmann, B. Thermal Transport through Single-Molecule Junctions. Nano Lett. 2019, 19, 7614–7622. [Google Scholar] [CrossRef]
- Cui, L.; Hur, S.; Akbar, Z.A.; Klöckner, J.C.; Jeong, W.; Pauly, F.; Jang, S.Y.; Reddy, P.; Meyhofer, E. Thermal conductance of single-molecule junctions. Nature 2019, 572, 628–633. [Google Scholar] [CrossRef]
- Wang, K.; Meyhofer, E.; Reddy, P. Thermal and Thermoelectric Properties of Molecular Junctions. Adv. Funct. Mater. 2019, 30, 1904534. [Google Scholar] [CrossRef]
- Rincón-García, L.; Evangeli, C.; Rubio-Bollinger, G.; Agraït, N. Thermopower measurements in molecular junctions. Chem. Soc. Rev. 2016, 45, 4285–4306. [Google Scholar] [CrossRef]
- Klöckner, J.C.; Siebler, R.; Cuevas, J.C.; Pauly, F. Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons. Phys. Rev. B 2017, 95, 245404. [Google Scholar] [CrossRef]
- Sadeghi, H.; Sangtarash, S.; Lambert, C.J. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation. Nano Lett. 2015, 15, 7467–7472. [Google Scholar] [CrossRef] [PubMed]
- Klöckner, J.C.; Cuevas, J.C.; Pauly, F. Tuning the thermal conductance of molecular junctions with interference effects. Phys. Rev. B 2017, 96, 1–10. [Google Scholar] [CrossRef]
- Chen, R.; Sharony, I.; Nitzan, A. Local Atomic Heat Currents and Classical Interference in Single-Molecule Heat Conduction. J. Phys. Chem. Lett. 2020, 11, 4261–4268. [Google Scholar] [CrossRef]
- Mosso, N.; Drechsler, U.; Menges, F.; Nirmalraj, P.; Karg, S.; Riel, H. Heat transport through atomic contacts. Nat. Nanotechnol. 2017, 12, 430–433. [Google Scholar] [CrossRef]
- Sadeghi, H. Discriminating Seebeck sensing of molecules. Phys. Chem. Chem. Phys. 2019, 21, 2378–2381. [Google Scholar] [CrossRef]
- Markussen, T. Phonon interference effects in molecular junctions. J. Chem. Phys. 2013, 139, 244101. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale Electronics: From Concept to Function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order- N materials simulation. J. Phys. Condens. Matter 2002, 14, 2745–2779. [Google Scholar] [CrossRef]
- Franz, R.; Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. Chem. 1853, 165, 497–531. [Google Scholar] [CrossRef]
Molecule | Calculated κ (pW/K) | Measured κ (pW/K) | Ref. | ||
---|---|---|---|---|---|
κp | κe at DFT Fermi Energy | ||||
Biphenyl–4,4′–dithiol (BDT) | 19.6 | 2.3 | - | [17] | |
2,2′–dinitro–BDT | 11.7 | <0.01 | - | [17] | |
oligo(2–phenylene–4,4′–ethynylene)–dithiol (OPE2) | 9.9 | <0.01 | - | [17] | |
2,2′–dinitro–OPE2 | 9.7 | 16.7 | - | [17] | |
4,4′–bipyridyl (BP) | 34.8 | <0.01 | - | [17] | |
3,3′,5,5′–tetrachloride–BP | 14.8 | <0.01 | - | [17] | |
3,3′–dinitro–BP | 23.6 | <0.01 | - | [17] | |
oligo(3–phenylene–4,4′–ethynylene)–dithiol (OPE3) | 19 | 0.1 | 20 ± 6 | [19] | |
Octane–dithiol | 23 | 0.02 | 29 ± 8 | [19] | |
Alkanes with dihydrobenzo[b]thiophene (BT) anchor (N = number of C2H4) | N = 1 | 25.4 | 0.03 | - | [24] |
N = 2 | 33.4 | <0.01 | - | [24] | |
N = 4 | 30.3 | <0.01 | - | [24] | |
N = 8 | 5.6 | <0.01 | - | [24] | |
Alkanedithiol (N = number of C2H4) | N = 1 | 17–22 | 5.7 | 14.6 ± 3 | [20] |
N = 2 | 18–27 | 1.1 | 13.4 ± 5 | [20] | |
N = 3 | 17–29 | <0.01 | 16.9 ± 3 | [20] | |
N = 4 | 20–33 | <0.01 | 26.3 ± 7 | [20] | |
N = 5 | 17–33 | <0.01 | 28 ± 8 | [20] | |
Oligoyne with BT anchor (N = number of C2H4) | N = 1 | 15.6 | 0.4 | - | [24] |
N = 2 | 9.2 | 0.5 | - | [24] | |
N = 4 | 7.7 | 0.25 | - | [24] | |
2,2′–bipyridine–BP | 6 | 0.3 | - | [18] | |
BP functionalized with tert–butyl nitroxide radical | 2 | 1.45 | - | [18] | |
C60 monomer | 20–46.3 | 68–572 | - | [23] | |
C60 dimer | 7–7.3 | 0.1–1.8 | - | [23] | |
Benzenedithiol | meta | 7.5 | - | - | [26] |
para | 22.5 | - | - | ||
Benzenediamine | meta | 24.5 | - | - | [25] |
para | 25.2 | - | - | ||
2–fluoro–1,4–diaminobenzene | 24.4 | 2.62 | [25] | ||
2–chloro–1,4–diaminobenzene | 22.2 | 2.7 | - | [25] | |
2–bromo–1,4–-diaminobenzene | 16.9 | 2.8 | - | [25] | |
2,5–dibromo–1,4–diaminobenzene | 17.9 | 2.9 | - | [25] | |
2,6–dibromo–1,4–diaminobenzene | 10.5 | 2.9 | - | [25] | |
2,3–dibromo–1,4–diaminobenzene | 18 | 3 | - | [25] | |
OPE3–diamine | meta | 13.8 | 0.11 | - | [25] |
para | 24.5 | <0.01 | - | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noori, M.D.; Sangtarash, S.; Sadeghi, H. The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions. Appl. Sci. 2021, 11, 1066. https://doi.org/10.3390/app11031066
Noori MD, Sangtarash S, Sadeghi H. The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions. Applied Sciences. 2021; 11(3):1066. https://doi.org/10.3390/app11031066
Chicago/Turabian StyleNoori, Mohammed D., Sara Sangtarash, and Hatef Sadeghi. 2021. "The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions" Applied Sciences 11, no. 3: 1066. https://doi.org/10.3390/app11031066
APA StyleNoori, M. D., Sangtarash, S., & Sadeghi, H. (2021). The Effect of Anchor Group on the Phonon Thermal Conductance of Single Molecule Junctions. Applied Sciences, 11(3), 1066. https://doi.org/10.3390/app11031066