Application of DMLF in Pulse Ranging LiDAR System
Abstract
:1. Introduction
2. Methods
2.1. Principle
2.2. Model of Transmitted Pulse and Echo Pulse in LiDAR
2.3. Analysis of the Differential-Optical-Path Approach
2.4. Analysis of the Linear Fitting Near PGZCPs
2.5. DMLF Algorithm Flow Chart
3. Results
3.1. Simulation Set Up
3.2. Error Analysis
4. Conclusions
- (1)
- It can handle phenomena such as low SNR and high noise power, and has strong anti-interference ability and robustness;
- (2)
- Compared with the traditional peak method, the DMLF proposed in this paper can reduce the timing error and decrease the RMSE by almost 50%;
- (3)
- Using the differential method with optimal axial shift d, the sensitivity and ranging accuracy of the pulse ranging LiDAR are significantly improved, and the RE of ranging can be less than 30 ppm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Xu, F.; Wang, Y.; Yang, X.; Zhang, B.; Li, F. Correction of linear-array lidar intensity data using an optimal beam shaping approach. Opt. Lasers Eng. 2016, 83, 90–98. [Google Scholar] [CrossRef]
- McManamon, P.F. Errata: Review of ladar: A historic, yet emerging, sensor technology with rich phenomenology. Opt. Eng. 2012, 51, 060901. [Google Scholar] [CrossRef] [Green Version]
- Richmond, R.D.; Cain, S.C. Direct-Detection LADAR Systems; SPIE: Bellingham, WA, USA, 2010. [Google Scholar]
- Ma, X.; Wang, C.; Han, G.; Ma, Y.; Li, S.; Gong, W.; Chen, J. Regional Atmospheric Aerosol Pollution Detection Based on LIDAR Remote Sensing. Remote Sens. 2019, 11, 2339. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Huang, J.; Gruen, A.; Qin, L. Assessing the Performance of ICESat-2/ATLAS Multi-Channel Photon Data for Estimating Ground Topography in Forested Terrain. Remote Sens. 2020, 12, 2084. [Google Scholar] [CrossRef]
- Royo, S.; Ballesta-Garcia, M. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci. 2019, 9, 4093. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, J.; Bastiaan, J. Characterizing the safety of self-driving vehicles: A fault containment protocol for functionality involving vehicle detection. In Proceedings of the 20th IEEE International Conference on Vehicular Electronics and Safety (ICVES), Conference Proceedings, Madrid, Spain, 12–14 September 2018; pp. 12–14. [Google Scholar]
- Yan, Z.; Duckett, T.; Bellotto, N. Online learning for 3D LiDAR-based human detection: Experimental analysis of point cloud clustering and classification methods. Auton. Robot. 2020, 44, 147–164. [Google Scholar] [CrossRef]
- Pan, Z.; Glennie, C.; Hartzell, P.; Fernandez-Diaz, J.C.; Legleiter, C.; Overstreet, B. Performance assessment of high resolution airborne full waveform LiDAR for shallow river bathymetry. Remote Sens. 2015, 7, 5133–5159. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Han, S.; Cao, J.; Yu, H. Target recognition of log-polar ladar range images using moment invariants. Opt. Lasers Eng. 2017, 88, 301–312. [Google Scholar] [CrossRef]
- Suchocki, C.; Damięcka-Suchocka, M.; Katzer, J.; Janicka, J.; Rapiński, J.; Stałowska, P. Remote Detection of Moisture and Bio-Deterioration of Building Walls by Time-Of-Flight and Phase-Shift Terrestrial Laser Scanners. Remote Sens. 2020, 12, 1708. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Zhang, Y.; Wu, L.; Yang, C.; Yang, X.; Zhang, Z.; Zhao, Y. Signal restoration method for restraining the range walk error of Geiger-mode avalanche photodiode LIDAR in acquiring a merged three dimensional image. Appl. Opt. 2017, 56, 3059–3063. [Google Scholar] [CrossRef] [PubMed]
- Whyte, R.; Streeter, L.; Cree, M.J. Application of LIDAR techniques to time-of-flight range imaging. Appl. Opt. 2015, 54, 9654–9664. [Google Scholar] [CrossRef] [PubMed]
- Hintikka, M.; Hallman, L.; Kostamovaara, J. Comparison of the leading-edge timing walk in pulsed TOF laser range finding with avalanche bipolar junction transistor (BJT) and metal-oxide-semiconductor (MOS) switch based laser diode drivers. Rev. Sci. Instrum. 2017, 88, 123109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtti, S.; Kostamovaara, J. An integrated receiver channel for a laser scanner. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Graz, Austria, 13–16 May 2012; pp. 1358–1361. [Google Scholar]
- Li, X.; Wang, H.; Yang, B.; Huyan, J.; Xu, L. Influence of time-pickoff circuit parameters on LiDAR range precision. Sensors 2017, 17, 2369. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, T.R.; Steinvall, O.K. Laser radar modeling for simulation and performance evaluation. In Proceedings Electro-Optical Remote Sensing, Photonic Technologies, and Applications III; International Society for Optics and Photonics: Berlin, Germany, 2009; Volume 7482, p. 748206. [Google Scholar]
- Zhang, Z.; Zhao, Y.; Zhang, Y.; Wu, L.; Su, J. A real-time noise filtering strategy for photon counting 3D imaging LIDAR. Opt. Express 2013, 21, 9247–9254. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.C.; Vu, T.T.; Ban, Y.; Niu, Z. Range determination for generating point clouds from airborne small footprint LiDAR waveforms. Opt. Express 2012, 20, 25935–25947. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qiu, L.; Zhao, W.; Wu, H. Laser differential reflection-confocal focal-length measurement. Opt Express 2012, 20, 26027–26036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Sun, R.; Qiu, L. Laser differential confocal ultra-long focal length measurement. Opt Express 2009, 17, 20051–20062. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Cui, T.X.; Li, Q.Y.; Zhang, B.; Bai, Y.R.; Wang, C.H. Waveform centroid discrimination of return pulse weighting method in LIDAR system. Optik 2019, 180, 840–846. [Google Scholar] [CrossRef]
Axial Shift (m) | d/4 | d/3 | d/2 | d | 3 d/2 | 2 d |
---|---|---|---|---|---|---|
Slope k (v/ns) | 0.0078 | 0.0127 | 0.0193 | 0.0229 | 0.0173 | 0.0052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Wang, C.; Qi, B. Application of DMLF in Pulse Ranging LiDAR System. Appl. Sci. 2021, 11, 1032. https://doi.org/10.3390/app11031032
Guo D, Wang C, Qi B. Application of DMLF in Pulse Ranging LiDAR System. Applied Sciences. 2021; 11(3):1032. https://doi.org/10.3390/app11031032
Chicago/Turabian StyleGuo, Dongbing, Chunhui Wang, and Baoling Qi. 2021. "Application of DMLF in Pulse Ranging LiDAR System" Applied Sciences 11, no. 3: 1032. https://doi.org/10.3390/app11031032
APA StyleGuo, D., Wang, C., & Qi, B. (2021). Application of DMLF in Pulse Ranging LiDAR System. Applied Sciences, 11(3), 1032. https://doi.org/10.3390/app11031032