Greenhouse Gas Impact of Algal Bio-Crude Production for a Range of CO2 Supply Scenarios
Abstract
:1. Introduction
2. Methodology
2.1. Process Flowsheet
- Scenario 1: CO2 from a coal-based power plant
- Scenario 2: CO2 from a natural gas-based power plant
- Scenario 3: CO2 from an NGCC unit with carbon capture and refrigeration
- Scenario 4: CO2 from a biomass combustion plant
- Scenario 5: CO2 from a biomass gasification plant
- Scenario 6: CO2 from DAC
2.2. Electricity Production and Night-Time Emissions
2.3. Greenhouse Gas (GHG) Emissions
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Pérez-López, P.; de Vree, J.H.; Feijoo, G.; Bosma, R.; Barbosa, M.J.; Moreira, M.T.; Wijffels, R.H.; van Boxtel, A.J.B.; Kleinegris, D.M.M. Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Appl. Energy 2017, 205, 1151–1164. [Google Scholar] [CrossRef] [Green Version]
- Ubando, A.T.; Rivera, D.R.T.; Chen, W.H.; Culaba, A.B. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Bioresour. Technol. 2019, 291, 121837. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Ruan, R.; Addy, M.; Mack, S.; Chen, P.; Zhou, Y. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production. Bioresour. Technol. 2017, 230, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.; Guo, M.; Shah, N.; Hellgardt, K. Environmental profile of algal Hydrothermal Liquefaction—A country specific case study. Algal Res. 2016, 16, 127–140. [Google Scholar] [CrossRef]
- Sun, C.H.; Fu, Q.; Liao, Q.; Xia, A.; Huang, Y.; Zhu, X.; Reungsang, A.; Chang, H.X. Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy 2019, 171, 1033–1045. [Google Scholar] [CrossRef]
- Rickman, M.; Pellegrino, J.; Hock, J.; Shaw, S.; Freeman, B. Life-cycle and techno-economic analysis of utility-connected algae systems. Algal Res. 2013, 2, 59–65. [Google Scholar] [CrossRef]
- Porcelli, R.; Dotto, F.; Pezzolesi, L.; Marazza, D.; Greggio, N.; Righi, S. Comparative life cycle assessment of microalgae cultivation for non-energy purposes using different carbon dioxide sources. Sci. Total Environ. 2020, 721, 137714. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Porter, M.D.; Colosi, L.M. Is hydrothermal treatment coupled with carbon capture and storage an energy-producing negative emissions technology? Energy Convers. Manag. 2020, 203, 112252. [Google Scholar] [CrossRef]
- Somers, M.D.; Quinn, J.C. Sustainability of carbon delivery to an algal biorefinery: A techno-economic and life-cycle assessment. J. CO2 Util. 2019, 30, 193–204. [Google Scholar] [CrossRef]
- Arora, P.; Chance, R.; Hendrix, H.; Realff, M.; Thomas, V.M.; Yuan, Y. Life Cycle Greenhouse Gas Emissions of Different CO2 Supply Options for an Algal Biorefinery. J. CO2 Util. 2020, 40, 101213. [Google Scholar] [CrossRef]
- Keith, D.W.; Holmes, G.; St. Angelo, D.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2, 1573–1594. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Pérez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct Capture of CO2 from Ambient Air. Chem. Rev. 2016, 116, 11840–11876. [Google Scholar] [CrossRef] [PubMed]
- McQueen, N.; Gomes, K.V.; McCormick, C.; Blumanthal, K.; Pisciotta, M.; Wilcox, J. A review of direct air capture (DAC): Scaling up commercial technologies and innovating for the future. Prog. Energy 2021, 3, 032001. [Google Scholar] [CrossRef]
- Chen, P.H.; Quinn, J.C. Microalgae to biofuels through hydrothermal liquefaction: Open-source techno-economic analysis and life cycle assessment. Appl. Energy 2021, 289, 116613. [Google Scholar] [CrossRef]
- Chance, R.; Roessler, P. Production of Biocrude in an Advanced Photobioreactor-Based Biorefinery; DOE Bioenergy Technologies Office (BETO): Washington, DC, USA, 2019. [Google Scholar]
- Staser, J. 2019 Project Peer Review; DOE Bioenergy Technologies Office (BETO): Washington, DC, USA, 2019; pp. 1–19. [Google Scholar]
- Davis, R.; Markham, J.; Kinchin, C.; Grundl, N.; Tan, E.; Humbird, D. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing through Dewatering for Downstream Conversion; The National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.B.; Zhu, Y.; Anderson, D.; Hallen, R.T.; Elliott, D.C. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2014. [Google Scholar]
- Legere, E. Algenol Integrated Pilot-Scale Biorefinery Public Version Final Report; Algenol: Fort Myers, FL, USA, 2017. [Google Scholar]
- ecoInvent Data Quality Guideline for the Ecoinvent Database V 3.0; The ecoinvent Centre: St. Gallen, Switzerland, 2009; Volume 3.
- Arora, P.; Chance, R.; Fishbeck, T.; Hendrix, H.; Realff, M.; Thomas, V.M.; Yuan, Y. Lifecycle Greenhouse Gas Emissions for an Ethanol Production Process Based on Genetically Modified Cyanobacteria: CO2 Sourcing Options. Biofuels Bioprod. Bioprocess. 2020, 14, 1324–1334. [Google Scholar] [CrossRef]
- Heijungs, R.; Suh, S. The Computational Structure of Life Cycle Assessment Eco-Efficiency in Industry and Science; Springer: Dordrecht, The Netherlands, 2002; ISBN 9781402006722. [Google Scholar]
- IPCC Working Group 1. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 78. ISBN 9781107661820. [Google Scholar]
- Balcombe, P.; Anderson, K.; Speirs, J.; Brandon, N.; Hawkes, A. The Natural Gas Supply Chain: The Importance of Methane and Carbon Dioxide Emissions. ACS Sustain. Chem. Eng. 2017, 5, 3–20. [Google Scholar] [CrossRef]
- Guest, G.; Cherubini, F.; Strømman, A.H. Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life. J. Ind. Ecol. 2013, 17, 20–30. [Google Scholar] [CrossRef]
- Liu, C.M.; Sandhu, N.K.; McCoy, S.T.; Bergerson, J.A. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer-Tropsch fuel production. Sustain. Energy Fuels 2020, 4, 3129–3142. [Google Scholar] [CrossRef] [Green Version]
Scenario | CO2 Source | Transport Distance (mi) | Infrastructure Required | Excess Electricity |
---|---|---|---|---|
1 | Coal based power plant | 2 | Pipeline | mostly at night |
2 | Natural gas power plant | 2 | CO2 capture facility, natural gas boiler, pipeline | mostly at night |
3 | NGCC plant with carbon capture and refrigeration | 0 | CO2 capture facility, natural gas boiler, refrigeration system, pipeline | day and night |
4 | Biomass combustion plant | 0 | Pipeline | day and night |
5 | Biomass gasification plant | 0 | Pipeline | day and night |
6 | Direct air capture plant | 0 | Pipeline | day and night |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arora, P.; Chance, R.R.; Hendrix, H.; Realff, M.J.; Thomas, V.M.; Yuan, Y. Greenhouse Gas Impact of Algal Bio-Crude Production for a Range of CO2 Supply Scenarios. Appl. Sci. 2021, 11, 11931. https://doi.org/10.3390/app112411931
Arora P, Chance RR, Hendrix H, Realff MJ, Thomas VM, Yuan Y. Greenhouse Gas Impact of Algal Bio-Crude Production for a Range of CO2 Supply Scenarios. Applied Sciences. 2021; 11(24):11931. https://doi.org/10.3390/app112411931
Chicago/Turabian StyleArora, Pratham, Ronald R. Chance, Howard Hendrix, Matthew J. Realff, Valerie M. Thomas, and Yanhui Yuan. 2021. "Greenhouse Gas Impact of Algal Bio-Crude Production for a Range of CO2 Supply Scenarios" Applied Sciences 11, no. 24: 11931. https://doi.org/10.3390/app112411931
APA StyleArora, P., Chance, R. R., Hendrix, H., Realff, M. J., Thomas, V. M., & Yuan, Y. (2021). Greenhouse Gas Impact of Algal Bio-Crude Production for a Range of CO2 Supply Scenarios. Applied Sciences, 11(24), 11931. https://doi.org/10.3390/app112411931