Activity of Chloroformic Extract from Salvia connivens (Lamiales: Lamiaceae) and Its Principal Compounds against Spodoptera frugiperda (Lepidoptera: Noctuidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Extracts of Salvia connivens
2.3. Insect Rearing
2.4. Bioassays of CHCl3Sc on Spodoptera frugiperda
2.5. Determination of the Major Compounds of CHCl3Sc
2.6. Bioassay of CHCl3Sc Major Compounds on Spodoptera frugiperda
2.7. Statistical Analysis
3. Results
3.1. Effect of S. connivens Extract on S. frugiperda
3.2. Identification of the Major Components of the Chloroform Extract of Aerial Parts of S. connivens
3.3. Biological Response from Pyrocatechol against S. frugiperda
3.4. Biological Response from Nonanal against S. frugiperda
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [Green Version]
- Lamsal, S.; Sibi, S.; Yadav, S. Fall armyworm in South Asia: Threats and management. Asian J. Adv. Agric. Res. 2020, 13, 21–34. [Google Scholar] [CrossRef]
- Sisay, B.; Tefera, T.; Wakgari, M.; Ayalew, G.; Mendesil, E. The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects 2019, 10, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Togola, A.; Meseka, S.; Menkir, A.; Badu-Apraku, B.; Boukar, O.; Tamò, M.; Djouaka, R. Measurement of pesticide residues from chemical control of the invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a maize experimental field in mokwa, Nigeria. Int. J. Environ. Res. Public Health 2018, 15, 849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazlan, N.; Ahmed, M.; Muharam, F.M.; Alam, M.A. Status of persistent organic pesticide residues in water and food and their effects on environment and farmers: A comprehensive review in Nigeria. Semin. Ciências Agrárias 2017, 38, 2221–2236. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Moreno, R.; Mota-Sanchez, D.; Blanco, C.A.; Whalon, M.E.; Terán-Santofimio, H.; Rodriguez-Maciel, J.C.; DiFonzo, C. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and México. J. Econ. Entomol. 2019, 112, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.G.; Chatzimichael, K.; Tzouvelekas, V. Sub-lethal concentrations of neonicotinoid insecticides at the field level affect negatively honey yield: Evidence from a 6-year survey of Greek apiaries. PLoS ONE 2019, 14, e0215363. [Google Scholar] [CrossRef] [Green Version]
- Hikal, W.M.; Baeshen, R.S.; Said-Al Ahl, H.A.H. Botanical insecticide as simple extractives for pest control. Cogent Biol. 2017, 3, 1404274. [Google Scholar] [CrossRef]
- Yadav, A.; Joshi, A.; Kothari, S.L.; Kachhwaha, S.; Purohit, S. Medicinal, nutritional and industrial applications of Salvia species: A revisit. Int. J. Pharm. Sci. 2017, 43, 27–37. [Google Scholar]
- Chen, Y.; Luo, J.; Zhang, N.; Yu, W.; Jiang, J.; Dai, G. Insecticidal activities of Salvia hispanica L. essential oil and combinations of their main compounds against the beet armyworm Spodoptera exigua. Ind. Crop. Prod. 2021, 162, 113271. [Google Scholar] [CrossRef]
- Najar, B.; Pistelli, L.; Venturi, F.; Ferroni, G.; Giovanelli, S.; Cervelli, C.; Bedini, S.; Conti, B. Salvia spp. Essential oils against the arboviruses vector Aedes albopictus (Diptera: Culicidae): Bioactivity, composition, and sensorial profile-stage 1. Biology (Basel) 2020, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Khedher, M.R.B.; Khedher, S.B.; Chaieb, I.; Tounsi, S.; Hammami, M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI J. 2017, 16, 160–173. [Google Scholar] [PubMed]
- Khedr, M.M.A. Opportunity for common sage, Salvia officinalis (L) essential oil as a natural biocide against cotton leafworm, Spodoptera littoralis (Boisd.). Pharm. Chem. J. 2019, 6, 47–55. [Google Scholar]
- Šućur, J.; Popović, A.; Petrović, M.; Anačkov, G.T.; Malenčić, D.; Prvulović, D. Allelophatic effects and insecticidal activity of Salvia sclarea L. Studia UBB Chem. 2015, 1, 253–264. [Google Scholar]
- Hashemi, S.M.; Safavi, S.A.; Estaji, A. Insecticidal activity of wood vinegar mixed with Salvia leriifolia (Benth.) extract against Lasioderma serricorne (F.). Biharean Biol. 2014, 8, 5–11. [Google Scholar]
- Cetin, H.; Cinbilgel, I.; Yanikoglu, A.; Gokceoglu, M. Larvicidal activity of some Labiatae (Lamiaceae) plant extracts from Turkey. Phytother. Res. 2006, 20, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Sánchez, M.Á.; Rodríguez-Chávez, J.L.; Figueroa-Brito, R.; Quintana-López, C.M.; Bah, M.M.; Campos-Guillén, J.; Bustos-Martínez, J.A.; Zamora-Avella, D.; Ramos-López, M.A. Bioactivity of 1-octacosanol from Senna crotalarioides (Fabaceae: Caesalpinioideae) to Control Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 2020, 102, 731. [Google Scholar] [CrossRef] [Green Version]
- Romo-Asunción, D.; Ávila-Calderón, M.A.; Ramos-López, M.A.; Barranco-Florido, J.E.; Rodríguez-Navarro, S.; Romero-Gomez, S.; Aldeco-Pérez, E.J.; Pacheco-Aguilar, J.R.; Rico-Rodríguez, M.A. Juvenomimetic and insecticidal activities of Senecio salignus (Asteraceae) and Salvia microphylla (Lamiaceae) on Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 2016, 99, 345–351. [Google Scholar] [CrossRef]
- Rodríguez, C.; Vendramin, J. Toxicidad de extractos de Meliaceae en Sposoptera frugiperda (Lepidoptera: Noctuidae). Man. Integral De Plagas 1996, 42, 14–22. [Google Scholar]
- Ramos-López, M.A.; Pérez, S.; Rodríguez-Hernández, G.C.; Guevara-Fefer, P.; Zavala-Sánchez, M.A. Activity of Ricinus communis (Euphorbiaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae). Afr. J. Biotechnol. 2010, 9, 1359–1365. [Google Scholar]
- Yun, L.; Qing, Z.; Dan-Dan, Z.; Fei, C.; Xiu-Hua, K.; Liang, L. Identification and characterization of the major chemical constituents in fructus akebiae by high-performance liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight mass spectrometry. J. Chromatogr. Sci. 2016, 54, 148–157. [Google Scholar]
- Ato, M.; López, J.J. Fundamentos de Estadística con SYSTAT; Ra-MA: Madrid, Spain, 1994. [Google Scholar]
- Zavala-Sánchez, M.A.; Gutiérrez, S.P.; Romo-Asunción, D.; Cárdenas-Ortega, N.C.; Ramos-López, M.A. Activity of four Salvia species against Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Southwest Entomol. 2013, 38, 67–73. [Google Scholar] [CrossRef]
- Irish, S.R.; Moore, S.J.; Bruce, J.; Birkett, M.A.; Cameron, M.M. Evaluation of a nonanal-trimethylamine lure for collection of Culex quinquefasciatus (Diptera: Culicidae) in gravid traps: Table 1. J. Med. Entomol. 2013, 50, 619–623. [Google Scholar] [CrossRef]
- Baricevic, D.; Sosa, S.; Della Loggia, R.; Tubaro, A.; Simonovska, B.; Krasna, A.; Zupancic, A. Topical anti-inflammatory activity of Salvia officinalis L. leaves: The relevance of ursolic acid. J. Ethnopharmacol. 2001, 75, 125–132. [Google Scholar] [CrossRef]
- Alimpić, A.; Knežević, A.; Milutinović, M.; Stević, T.; Šavikin, K.; Stajić, M.; Marković, S.; Marin, P.D.; Matevski, V.; Duletić-Laušević, S. Biological activities and chemical composition of Salvia amplexicaulis Lam. extracts. Ind. Crop. Prod. 2017, 105, 1–9. [Google Scholar] [CrossRef]
- Duletić-Laušević, S.; Alimpić Aradski, A.; Šavikin, K.; Knežević, A.; Milutinović, M.; Stević, T.; Vukojević, J.; Marković, S.; Marin, P.D. Composition and biological activities of Libyan Salvia fruticosa Mill. and S. lanigera Poir. extracts. S. Afr. J. Bot. 2018, 117, 101–109. [Google Scholar] [CrossRef]
- Tabanca, N.; Demirci, B.; Turner, J.L.; Pounders, C.; Demirci, F.; Başer, K.H.C.; Wedge, D.E. Microdistillation and analysis of volatiles from eight ornamental Salvia taxa. Nat. Prod. Commun. 2010, 5, 1421–1426. [Google Scholar] [CrossRef] [Green Version]
- Najar, B.; Mecacci, G.; Nardi, V.; Cervelli, C.; Nardoni, S.; Mancianti, F.; Ebani, V.V.; Giannecchini, S.; Pistelli, L. Volatiles and antifungal-antibacterial-antiviral activity of south African Salvia spp. Essential oils cultivated in uniform conditions. Molecules 2021, 26, 2826. [Google Scholar] [CrossRef] [PubMed]
- Velickovic, D.T.; Ristic, M.S.; Milosavljevic, N.P.; Davidovic, D.N.; Bogdanovic, S.Z. Chemical composition of the essential oil of Salvia argentea L. Agro Food Ind. Hi Tech 2014, 25, 70–72. [Google Scholar]
- Bader, A.; Cioni, P.L.; De Tommasi, N.; Flamini, G. Essential oil compositions of two populations of Salvia samuelssonii growing in different biogeographical regions of Jordan. Nat. Prod. Commun. 2014, 9, 141–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tusevski, O.; Kostovska, A.; Iloska, A.; Trajkovska, L.; Simic, S. Phenolic production and antioxidant properties of some Macedonian medicinal plants. Open Life Sci. 2014, 9, 888–900. [Google Scholar] [CrossRef]
- Halfon, B.; Çetin, Ö.; Kökdil, G.; Topçu, G. Chemical investigation and bioactivity screening of salvia cassia extracts. Rec. Nat. Prod. 2018, 13, 156–166. [Google Scholar] [CrossRef]
- Kocaçalişkan, I.; Talan, I.; Terzi, I. Antimicrobial activity of catechol and pyrogallol as allelochemicals. Z. Naturforsch. 2006, 61, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.A.; Soliman, H.S.M.; Hamed, F.M.; Marrez, D.A.; Othman, S.M. Antibacterial activity of vanillic acid and catechol produced by microbial biotransformation of caffiec acid. J. Pharm. Sci. Res. 2020, 12, 740–743. [Google Scholar]
- Zhang, J.-H.; Sun, H.-L.; Chen, S.-Y.; Zeng, L.; Wang, T.-T. Anti-fungal activity, mechanism studies on α-Phellandrene and nonanal against Penicillium cyclopium. Bot. Stud. 2017, 58, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, W.G.D.; Ramarathnam, R.; Krishnamoorthy, A.S.; Savchuk, S.C. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 2005, 37, 955–964. [Google Scholar] [CrossRef]
- Xiu, C.-L.; Xu, B.; Pan, H.-S.; Zhang, W.; Yang, Y.-Z.; Lu, Y.-H. Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coleoptera: Coccinellidae). J. Integr. Agric. 2019, 18, 873–883. [Google Scholar] [CrossRef] [Green Version]
- Galassi, F.G.; Fronza, G.; Toloza, A.C.; Picollo, M.I.; González-Audino, P. Response of Pediculus humanus capitis (Phthiraptera: Pediculidae) to volatiles of whole and individual components of the human scalp. J. Med. Entomol. 2018, 55, 527–533. [Google Scholar] [CrossRef]
- Gosset, V.; Harmel, N.; Göbel, C.; Francis, F.; Haubruge, E.; Wathelet, J.-P.; du Jardin, P.; Feussner, I.; Fauconnier, M.-L. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. J. Exp. Bot. 2009, 60, 1231–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment (ppm) | Mortality % | Duration (days) | Pupal Weight (mg) | ||
---|---|---|---|---|---|
Larvae | Pupae | Larvae | Pupae | ||
5000 | 90 ± 6.9 a | 10 ± 6.9 a | 56.5 ± 4.5 a | ND | 98 ± 3 a |
4000 | 80 ± 9.2 a | 20 ± 9.2 a | 50 ± 1.2 a | ND | 105.8 ± 7.7 a |
2000 | 70 ± 10.5 ab | 15 ± 8.2 a | 31.3 ± 2.4 b | 13.7 ± 0.3 a | 140.2 ± 10.8 b |
1000 | 55 ± 11.4 ab | 15 ± 8.2 a | 29.4 ± 0.7 b | 11 ±0.4 b | 164.5 ± 11.9 bc |
500 | 35 ± 10.9 bc | 0 ± 0 a | 23.7 ± 1.1 c | 9.8 ± 0.2 c | 207.5 ± 11.2 bc |
0 | 10 ± 6.9 c | 0 ± 0 a | 21.8 ± 0.7 c | 9.6 ± 0.2 c | 229.8 ± 4.6 c |
LC50 | 1504.03 (893.5–2114.6) ppm |
No. | Name | Formula | Mass | Mass (MFG) | RT (min) | DB | MFG | No. of Isomers |
---|---|---|---|---|---|---|---|---|
1 | 6E-Octen-2,4-dinoic acid | C8H6O2 | 134.03 | 134.03 | 10.05 | 97.83 | 97.84 | 6 |
2 | S-2-Hidroxyglutarate | C5H8O5 | 148.03 | 148.03 | 10.16 | 57.70 | 57.72 | 2 |
3 | Glutaral | C5H8O2 | 100.05 | 100.05 | 11.93 | 99.76 | 99.76 | 2 |
4 | Pyrocatechol | C6H6O2 | 110.03 | 110.03 | 12.76 | 95.06 | 95.06 | 4 |
5 | Nonanal | C9H18O | 142.13 | 142.13 | 13.56 | 96.88 | 96.88 | 1 |
6 | Indanone | C9H8O | 132.05 | 14.83 | 90.42 |
Treatment (ppm) | Mortality % | Duration (days) | Pupal Weight (mg) | ||
---|---|---|---|---|---|
Larvae | Pupae | Larvae | Pupae | ||
1000 | 15 ± 8.2 a | 25 ± 9.9 a | 30.2 ± 0.2 a | 15.2 ± 0.3 a | 246.8 ± 0.7 a |
600 | 10 ± 6.9 a | 20 ± 9.2 a | 27.9 ± 0.5 b | 15.1 ± 0.3 ab | 242.1 ± 0.4 b |
400 | 10 ± 6.9 a | 20 ± 9.2 a | 28.0 ± 0.5 b | 14.60 ± 0.4 abc | 230.8 ± 0.4 c |
120 | 5 ± 5 a | 20 ± 9.2 a | 27.9 ± 0.2 b | 14.1 ± 0.2 bc | 230.5 ± 0.4 c |
80 | 5 ± 5.00 a | 15 ± 8.2 a | 27 ± 0.2 b | 14.1 ± 0.2 bc | 230.1 ± 0.3 c |
0 | 10 ± 6.9 a | 10 ± 6.9 a | 25.3 ± 0.3 c | 13.6 ± 0.3 c | 216.5 ± 0.5 d |
LC50 | 3339.2 (ND) ppm |
Treatment (ppm) | Mortality % | Duration (days) | Pupal Weight (mg) | ||
---|---|---|---|---|---|
Larvae | Pupae | Larvae | Pupae | ||
1000 | 90 ± 6.9 a | 10 ± 6.9 a | 47 ± 1.0 a | - | 187.5 ± 1.5 a |
600 | 70 ± 10.5 a | 10 ± 6.9 a | 42.8 ± 0.5 b | 17 ± 0.6 a | 225 ± 0.7 b |
400 | 70 ± 10.5 a | 5 ± 5.00 a | 41.3 ± 0.5 bc | 16.8 ± 0.7 a | 232.3 ± 1.2 b |
120 | 65 ± 10.9 a | 5 ± 5.00 a | 40.1 ± 0.6 bc | 16.6 ± 0.6 a | 239.4 ± 0.7 c |
80 | 55 ± 11.4 a | 5 ± 5.00 a | 39.4 ± 0.5 c | 16.1 ± 0.5 a | 238.4 ± 1.1 d |
0 | 5 ± 5 b | 0 ± ND a | 36.2 ± 0.4 d | 16 ± 0.4 a | 246.7 ± 0.6 e |
LC50 | 200 (7.9–338.6) ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Macías, A.; Flores-Sánchez, M.A.; León-Herrera, L.R.; Mondragón-Olguín, V.M.; Zavala-Gómez, C.E.; Tapia-Pérez, A.D.; Campos-Guillén, J.; Amaro-Reyes, A.; Sandoval-Cárdenas, D.I.; Romero-Gómez, S.d.J.; et al. Activity of Chloroformic Extract from Salvia connivens (Lamiales: Lamiaceae) and Its Principal Compounds against Spodoptera frugiperda (Lepidoptera: Noctuidae). Appl. Sci. 2021, 11, 11813. https://doi.org/10.3390/app112411813
Flores-Macías A, Flores-Sánchez MA, León-Herrera LR, Mondragón-Olguín VM, Zavala-Gómez CE, Tapia-Pérez AD, Campos-Guillén J, Amaro-Reyes A, Sandoval-Cárdenas DI, Romero-Gómez SdJ, et al. Activity of Chloroformic Extract from Salvia connivens (Lamiales: Lamiaceae) and Its Principal Compounds against Spodoptera frugiperda (Lepidoptera: Noctuidae). Applied Sciences. 2021; 11(24):11813. https://doi.org/10.3390/app112411813
Chicago/Turabian StyleFlores-Macías, Antonio, Miguel Alejandro Flores-Sánchez, Luis Ricardo León-Herrera, Víctor Manuel Mondragón-Olguín, Carlos Eduardo Zavala-Gómez, Ana Delia Tapia-Pérez, Juan Campos-Guillén, Aldo Amaro-Reyes, Diana Issell Sandoval-Cárdenas, Sergio de Jesús Romero-Gómez, and et al. 2021. "Activity of Chloroformic Extract from Salvia connivens (Lamiales: Lamiaceae) and Its Principal Compounds against Spodoptera frugiperda (Lepidoptera: Noctuidae)" Applied Sciences 11, no. 24: 11813. https://doi.org/10.3390/app112411813
APA StyleFlores-Macías, A., Flores-Sánchez, M. A., León-Herrera, L. R., Mondragón-Olguín, V. M., Zavala-Gómez, C. E., Tapia-Pérez, A. D., Campos-Guillén, J., Amaro-Reyes, A., Sandoval-Cárdenas, D. I., Romero-Gómez, S. d. J., Guevara-González, R. G., Soto-Muñoz, L., Zavala, G. A., & Ramos-López, M. A. (2021). Activity of Chloroformic Extract from Salvia connivens (Lamiales: Lamiaceae) and Its Principal Compounds against Spodoptera frugiperda (Lepidoptera: Noctuidae). Applied Sciences, 11(24), 11813. https://doi.org/10.3390/app112411813