New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. The “Coristo” Mandolin
2.2. The Methodological Approach
3. Results and Discussion
3.1. Selection of the Areas of Analysis
3.2. Reflection FT-IR Spectroscopic Analysis
3.3. XRF Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiocco, G.; Invernizzi, C.; Rovetta, T.; Albano, M.; Malagodi, M.; Davit, P.; Gulmini, M. Surfing through the coating system of historic bowed instruments: A spectroscopic perspective. Spectrosc. Eur. 2021, 33, 19–22. [Google Scholar] [CrossRef]
- Invernizzi, C.; Fiocco, G.; Iwanicka, M.; Targowski, P.; Piccirillo, A.; Vagnini, M.; Licchelli, M.; Malagodi, M.; Bersani, D. Surface and interface treatments on wooden artefacts: Potentialities and limits of a non-invasive multi-technique study. Coatings 2021, 11, 29. [Google Scholar] [CrossRef]
- Cacciatori, F. Antonio Stradivari, Disegni, Modelli e Forme–Catalogo Dei Reperti Delle Collezioni Civiche Liutarie del Comune di Cremona, Cremona; Fondazione Museo del Violino Antonio Stradivari: Cremona, Italy, 2016; ISBN 88-9091-795-0. [Google Scholar]
- Invernizzi, C.; Daveri, A.; Rovetta, T.; Vagnini, M.; Licchelli, M.; Cacciatori, F.; Malagodi, M. A multi-analytical non-invasive approach to violin materials: The case of Antonio Stradivari ‘Hellier’ (1679). Microchem. J. 2016, 124, 743–750. [Google Scholar] [CrossRef]
- Invernizzi, C.; Fiocco, G.; Iwanicka, M.; Kowalska, M.; Targowski, P.; Blümich, B.; Rehorn, C.; Gabrielli, V.; Bersani, D.; Licchelli, M.; et al. Non-invasive mobile technology to study the stratigraphy of ancient Cremonese violins: OCT, NMR-MOUSE, XRF and reflection FT-IR spectroscopy. Microchem. J. 2020, 155, 104754. [Google Scholar] [CrossRef]
- Echard, J.P.; Benoit, C.; Peris-Vicente, J.; Malecki, V.; Gimeno-Adelantado, J.V.; Vaiedelich, S. Gas chromatography/mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin. Anal. Chim. Acta 2007, 584, 172–180. [Google Scholar] [CrossRef]
- Echard, J.P.; Bertrand, L.; Von Bohlen, A.; Le Hô, A.S.; Paris, C.; Bellot-Gurlet, L.; Soulier, B.; Lattuati-Derieux, A.; Thao, S.; Robinet, L.; et al. The Nature of the extraordinary finish of Stradivari’s instruments. Angew. Chemie-Int. Ed. 2010, 49, 197–201. [Google Scholar] [CrossRef]
- Nagyvary, J. The chemistry of a stradivarius. Chem. Eng. News 1988, 66, 24–31. [Google Scholar] [CrossRef]
- Echard, J.P.; Lavédrine, B. Review on the characterisation of ancient stringed musical instruments varnishes and implementation of an analytical strategy. J. Cult. Herit. 2008, 9, 420–429. [Google Scholar] [CrossRef]
- Rovetta, T.; Invernizzi, C.; Licchelli, M.; Cacciatori, F.; Malagodi, M. The elemental composition of Stradivari’s musical instruments: New results through non-invasive EDXRF analysis. X-ray Spectrom. 2018, 47, 159–170. [Google Scholar] [CrossRef]
- Rovetta, T.; Invernizzi, C.; Fiocco, G.; Albano, M.; Licchelli, M.; Gulmini, M.; Alf, G.; Fabbri, D.; Rombolà, A.G.; Malagodi, M. The case of Antonio Stradivari 1718 ex-San Lorenzo violin: History, restorations and conservation perspectives. J. Archaeol. Sci. Rep. 2019, 23, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Zumbühl, S.; Soulier, B.; Zindel, C. Varnish technology during the 16th-18th century: The use of pumice and bone ash as solid driers. J. Cult. Herit. 2021, 47, 56–68. [Google Scholar] [CrossRef]
- Invernizzi, C.; Fichera, G.V.; Licchelli, M.; Malagodi, M. A non-invasive stratigraphic study by reflection FT-IR spectroscopy and UV-induced fluorescence technique: The case of historical violins. Microchem. J. 2018, 138, 273–281. [Google Scholar] [CrossRef]
- Su, C.; Chen, S.; Chung, J.; Li, G.; Brandmair, B.; Huthwelker, T.; Fulton, J.L.; Borca, C.N.; Huang, S.; Nagyvary, J.; et al. Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angew. Chemie Int. Ed. 2021, 60, 19144–19154. [Google Scholar] [CrossRef]
- Obataya, E. Effects of natural and artificial ageing on the physical and acoustic properties of wood in musical instruments. J. Cult. Herit. 2017, 27, S63–S69. [Google Scholar] [CrossRef] [Green Version]
- Tai, H.-C.; Chen, P.-L.; Xu, J.-W.; Chen, S.-Y. Two-photon fluorescence and second harmonic generation hyperspectral imaging of old and modern spruce woods. Opt. Express 2020, 28, 38831–38841. [Google Scholar] [CrossRef] [PubMed]
- Cacciatori, F.; Sheets, A. Reunion in Cremona. Tesori dal “National Music Museum” Vermillion, South-Dakota al Museo del Violino; Catalogue edited by Fondazione Museo del Violino; Antonio Stradivari Cremona: Cremona, Italy, 2019. [Google Scholar]
- Torrisi, F. Il ‘Mandolino Coristo’ di Antonio Stradivari La sua Rinascita a Cremona Nell’anno 2000; Cremona, Italy, 2002. [Google Scholar]
- Rovetta, T.; Canevari, C.; Festa, L.; Licchelli, M.; Prati, S.; Malagodi, M. The golden age of the Neapolitan lutherie (1750–1800): New insights on the varnishes and decorations of ten historic mandolins. Appl. Phys. A Mater. Sci. Process. 2015, 118, 7–16. [Google Scholar] [CrossRef]
- De la Rie, E.R. Fluorescence of Paint and Varnish Layers (Part I). Stud. Conserv. 1982, 27, 1–7. [Google Scholar]
- De la Rie, E.R. Fluorescence of paint and varnish layers (Part II). Stud. Conserv. 1982, 27, 65–69. [Google Scholar]
- Bonaduce, I.; Ribechini, E.; Modugno, F.; Colombini, M.P. Analytical Chemistry for Cultural Heritage; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Artioli, G. Scientific Methods and Cultural Heritage: An Introduction to the Application of Materials Science to Archaeometry and Conservation Science; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Korte, E.H.; Staat, H. Infrared reflection studies of historical varnishes. Fresenius. J. Anal. Chem. 1993, 347, 454–457. [Google Scholar] [CrossRef]
- Rosi, F.; Cartechini, L.; Sali, D.; Miliani, C. Recent trends in the application of fourier transform infrared (FT-IR) spectroscopy in Heritage Science: From micro: From non-invasive FT-IR. Phys. Sci. Rev. 2019, 4, 1–19. [Google Scholar] [CrossRef]
- Dondi, P.; Lombardi, L.; Rocca, I.; Malagodi, M.; Licchelli, M. Multimodal workflow for the creation of interactive presentationsof 360 spin images of historical violins. Multimed. Tools Appl. 2018, 77, 28309–28332. [Google Scholar] [CrossRef]
- Dondi, P.; Lombardi, L.; Invernizzi, C.; Rovetta, T.; Malagodi, M.; Licchelli, M. Automatic Analysis of UV-Induced FluorescenceImagery of Historical Violins. ACM J. Comput. Cult. Herit. 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Fiocco, G.; Gonzalez, S.; Invernizzi, C.; Rovetta, T.; Albano, M.; Dondi, P.; Licchelli, M.; Antonacci, F.; Malagodi, M. Compositional and morphological comparison among three coeval violins made by giuseppe guarneri ‘del Gesù’ in 1734. Coatings 2021, 11, 884. [Google Scholar] [CrossRef]
- Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Poli, T.; Chiantore, O.; Nervo, M.; Piccirillo, A. Mid-IR fiber-optic reflectance spectroscopy for identifying the finish on wooden furniture. Anal. Bioanal. Chem. 2011, 400, 161–1171. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, C.; Daveri, A.; Vagnini, M.; Malagodi, M. Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: A methodological approach. Anal. Bioanal. Chem. 2017, 409, 3281–3288. [Google Scholar] [CrossRef]
- Derrick, M.; Stulik, D.; Landry, J. Infrared Spectroscopy in Conservation Science; Getty Publications: Los Angeles, CA, USA, 1999. [Google Scholar]
- Invernizzi, C.; Rovetta, T.; Licchelli, M.; Malagodi, M. Mid and near-infrared reflection spectral database of natural organic materials in the cultural heritage field. Int. J. Anal. Chem. 2018, 7823248, 1–16. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl. Phys. A Mater. Sci. Process. 2012, 106, 295–307. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, J. Fabrication of superhydrophobic wood surface with a silica/silicone oil complex emulsion. Wood Res. 2018, 63, 353–364. [Google Scholar]
- Fiocco, G.; Rovetta, T.; Gulmini, M.; Piccirillo, A.; Canevari, C.; Licchelli, M.; Malagodi, M. Approaches for detecting madder lake in multi-layered coating systems of historical bowed string instruments. Coatings 2018, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Weththimuni, M.L.; Canevari, C.; Legnani, A.; Licchelli, M.; Malagodi, M.; Ricca, M.; Zeffiro, A. Experimental characterization of oil-colophony varnishes: A preliminary study. Int. J. Conserv. Sci. 2016, 7, 813–826. [Google Scholar]
- Daher, C.; Paris, C.; Le Hô, A.S.; Bellot-Gurlet, L.; Échard, J.P. A joint use of Raman and infrared spectroscopies for the identification of natural organic media used in ancient varnishes. J. Raman Spectrosc. 2010, 41, 1494–1499. [Google Scholar] [CrossRef] [Green Version]
- Daher, C.; Pimenta, V.; Bellot-Gurlet, L. Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: Methodological approach. Talanta 2014, 129, 336–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, J.S.; White, R. Natural resins of art and archaeology their sources, chemistry, and identification. Stud. Conserv. 1977, 22, 12–31. [Google Scholar]
- Tai, B.H. Stradivari’s Varnish A Review of Scientific Findings—Part I. J. Violin Soc. Am. VSA Pap. 2007, 21, 119–144. [Google Scholar]
- Von Bohlen, A.; Meyer, F. Microanalysis of old violin varnishes by total-reflection X-ray fluorescence. Spectrochim. Acta-Part B At. Spectrosc. 1997, 52, 1053–1056. [Google Scholar] [CrossRef]
- Echard, J.P. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins. Spectrochim. Acta-Part B At. Spectrosc. 2004, 59, 1663–1667. [Google Scholar] [CrossRef]
- Malagodi, M.; Canevari, C.; Bonizzoni, L.; Galli, A.; Maspero, F.; Martini, M. A multi-technique chemical characterization of a Stradivari decorated violin top plate. Appl. Phys. A Mater. Sci. Process. 2013, 112, 225–234. [Google Scholar] [CrossRef]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium A Disctionary and Optical Microscopy of Historical Pigments; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Canevari, C.; Delorenzi, M.; Invernizzi, C.; Licchelli, M.; Malagodi, M.; Rovetta, T.; Weththimuni, M. Chemical characterization of wood samples colored with iron inks: Insights into the ancient techniques of wood coloring. Wood Sci. Technol. 2016, 50, 1057–1070. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Canevari, C.; Galli, A.; Gargano, M.; Ludwig, N.; Malagodi, M.; Rovetta, T. A multidisciplinary materials characterization of a Joannes Marcus viol (16th century). Herit. Sci. 2014, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Bulathsinghala, A.T.; Shaw, I.C. The toxic chemistry of methyl bromide. Hum. Exp. Toxicol. 2013, 33, 81–91. [Google Scholar] [CrossRef] [PubMed]
Area of the Mandolin | >10 | 1–10 | <1 |
---|---|---|---|
Top plate | - | K, Ca | Si, P, S, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Pb |
Shell | - | K, Ca | Si, P, S, Ti, Fe, Cu, Pb |
Restoration material on the treble side | - | Ca, Fe, Zn | S, K, Cr, Mn, Ni, Cu, Sr, Ba, Pb |
Purfling on the shell (SP) | Fe | K, Ca | Si, P, S, Ti, Cr, Mn, Cu, Zn, Sr, Pb |
Fingerboard | Fe | K, Ca | Si, P, S, Ti, Mn, Cu, Zn, Sr, Pb |
Purfling on the top plate (TP) | - | K, Ca, Fe | Si, P, S, Ti, Cr, Mn, Ni, Cu, Zn, Br, Sr, Pb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volpi, F.; Fiocco, G.; Rovetta, T.; Invernizzi, C.; Albano, M.; Licchelli, M.; Malagodi, M. New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach. Appl. Sci. 2021, 11, 11626. https://doi.org/10.3390/app112411626
Volpi F, Fiocco G, Rovetta T, Invernizzi C, Albano M, Licchelli M, Malagodi M. New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach. Applied Sciences. 2021; 11(24):11626. https://doi.org/10.3390/app112411626
Chicago/Turabian StyleVolpi, Francesca, Giacomo Fiocco, Tommaso Rovetta, Claudia Invernizzi, Michela Albano, Maurizio Licchelli, and Marco Malagodi. 2021. "New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach" Applied Sciences 11, no. 24: 11626. https://doi.org/10.3390/app112411626
APA StyleVolpi, F., Fiocco, G., Rovetta, T., Invernizzi, C., Albano, M., Licchelli, M., & Malagodi, M. (2021). New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach. Applied Sciences, 11(24), 11626. https://doi.org/10.3390/app112411626