New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. The “Coristo” Mandolin
2.2. The Methodological Approach
3. Results and Discussion
3.1. Selection of the Areas of Analysis
3.2. Reflection FT-IR Spectroscopic Analysis
3.3. XRF Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiocco, G.; Invernizzi, C.; Rovetta, T.; Albano, M.; Malagodi, M.; Davit, P.; Gulmini, M. Surfing through the coating system of historic bowed instruments: A spectroscopic perspective. Spectrosc. Eur. 2021, 33, 19–22. [Google Scholar] [CrossRef]
- Invernizzi, C.; Fiocco, G.; Iwanicka, M.; Targowski, P.; Piccirillo, A.; Vagnini, M.; Licchelli, M.; Malagodi, M.; Bersani, D. Surface and interface treatments on wooden artefacts: Potentialities and limits of a non-invasive multi-technique study. Coatings 2021, 11, 29. [Google Scholar] [CrossRef]
- Cacciatori, F. Antonio Stradivari, Disegni, Modelli e Forme–Catalogo Dei Reperti Delle Collezioni Civiche Liutarie del Comune di Cremona, Cremona; Fondazione Museo del Violino Antonio Stradivari: Cremona, Italy, 2016; ISBN 88-9091-795-0. [Google Scholar]
- Invernizzi, C.; Daveri, A.; Rovetta, T.; Vagnini, M.; Licchelli, M.; Cacciatori, F.; Malagodi, M. A multi-analytical non-invasive approach to violin materials: The case of Antonio Stradivari ‘Hellier’ (1679). Microchem. J. 2016, 124, 743–750. [Google Scholar] [CrossRef]
- Invernizzi, C.; Fiocco, G.; Iwanicka, M.; Kowalska, M.; Targowski, P.; Blümich, B.; Rehorn, C.; Gabrielli, V.; Bersani, D.; Licchelli, M.; et al. Non-invasive mobile technology to study the stratigraphy of ancient Cremonese violins: OCT, NMR-MOUSE, XRF and reflection FT-IR spectroscopy. Microchem. J. 2020, 155, 104754. [Google Scholar] [CrossRef]
- Echard, J.P.; Benoit, C.; Peris-Vicente, J.; Malecki, V.; Gimeno-Adelantado, J.V.; Vaiedelich, S. Gas chromatography/mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin. Anal. Chim. Acta 2007, 584, 172–180. [Google Scholar] [CrossRef]
- Echard, J.P.; Bertrand, L.; Von Bohlen, A.; Le Hô, A.S.; Paris, C.; Bellot-Gurlet, L.; Soulier, B.; Lattuati-Derieux, A.; Thao, S.; Robinet, L.; et al. The Nature of the extraordinary finish of Stradivari’s instruments. Angew. Chemie-Int. Ed. 2010, 49, 197–201. [Google Scholar] [CrossRef]
- Nagyvary, J. The chemistry of a stradivarius. Chem. Eng. News 1988, 66, 24–31. [Google Scholar] [CrossRef]
- Echard, J.P.; Lavédrine, B. Review on the characterisation of ancient stringed musical instruments varnishes and implementation of an analytical strategy. J. Cult. Herit. 2008, 9, 420–429. [Google Scholar] [CrossRef]
- Rovetta, T.; Invernizzi, C.; Licchelli, M.; Cacciatori, F.; Malagodi, M. The elemental composition of Stradivari’s musical instruments: New results through non-invasive EDXRF analysis. X-ray Spectrom. 2018, 47, 159–170. [Google Scholar] [CrossRef]
- Rovetta, T.; Invernizzi, C.; Fiocco, G.; Albano, M.; Licchelli, M.; Gulmini, M.; Alf, G.; Fabbri, D.; Rombolà, A.G.; Malagodi, M. The case of Antonio Stradivari 1718 ex-San Lorenzo violin: History, restorations and conservation perspectives. J. Archaeol. Sci. Rep. 2019, 23, 443–450. [Google Scholar] [CrossRef]
- Zumbühl, S.; Soulier, B.; Zindel, C. Varnish technology during the 16th-18th century: The use of pumice and bone ash as solid driers. J. Cult. Herit. 2021, 47, 56–68. [Google Scholar] [CrossRef]
- Invernizzi, C.; Fichera, G.V.; Licchelli, M.; Malagodi, M. A non-invasive stratigraphic study by reflection FT-IR spectroscopy and UV-induced fluorescence technique: The case of historical violins. Microchem. J. 2018, 138, 273–281. [Google Scholar] [CrossRef]
- Su, C.; Chen, S.; Chung, J.; Li, G.; Brandmair, B.; Huthwelker, T.; Fulton, J.L.; Borca, C.N.; Huang, S.; Nagyvary, J.; et al. Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angew. Chemie Int. Ed. 2021, 60, 19144–19154. [Google Scholar] [CrossRef]
- Obataya, E. Effects of natural and artificial ageing on the physical and acoustic properties of wood in musical instruments. J. Cult. Herit. 2017, 27, S63–S69. [Google Scholar] [CrossRef]
- Tai, H.-C.; Chen, P.-L.; Xu, J.-W.; Chen, S.-Y. Two-photon fluorescence and second harmonic generation hyperspectral imaging of old and modern spruce woods. Opt. Express 2020, 28, 38831–38841. [Google Scholar] [CrossRef] [PubMed]
- Cacciatori, F.; Sheets, A. Reunion in Cremona. Tesori dal “National Music Museum” Vermillion, South-Dakota al Museo del Violino; Catalogue edited by Fondazione Museo del Violino; Antonio Stradivari Cremona: Cremona, Italy, 2019. [Google Scholar]
- Torrisi, F. Il ‘Mandolino Coristo’ di Antonio Stradivari La sua Rinascita a Cremona Nell’anno 2000; Cremona, Italy, 2002. [Google Scholar]
- Rovetta, T.; Canevari, C.; Festa, L.; Licchelli, M.; Prati, S.; Malagodi, M. The golden age of the Neapolitan lutherie (1750–1800): New insights on the varnishes and decorations of ten historic mandolins. Appl. Phys. A Mater. Sci. Process. 2015, 118, 7–16. [Google Scholar] [CrossRef]
- De la Rie, E.R. Fluorescence of Paint and Varnish Layers (Part I). Stud. Conserv. 1982, 27, 1–7. [Google Scholar]
- De la Rie, E.R. Fluorescence of paint and varnish layers (Part II). Stud. Conserv. 1982, 27, 65–69. [Google Scholar]
- Bonaduce, I.; Ribechini, E.; Modugno, F.; Colombini, M.P. Analytical Chemistry for Cultural Heritage; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Artioli, G. Scientific Methods and Cultural Heritage: An Introduction to the Application of Materials Science to Archaeometry and Conservation Science; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Korte, E.H.; Staat, H. Infrared reflection studies of historical varnishes. Fresenius. J. Anal. Chem. 1993, 347, 454–457. [Google Scholar] [CrossRef]
- Rosi, F.; Cartechini, L.; Sali, D.; Miliani, C. Recent trends in the application of fourier transform infrared (FT-IR) spectroscopy in Heritage Science: From micro: From non-invasive FT-IR. Phys. Sci. Rev. 2019, 4, 1–19. [Google Scholar] [CrossRef]
- Dondi, P.; Lombardi, L.; Rocca, I.; Malagodi, M.; Licchelli, M. Multimodal workflow for the creation of interactive presentationsof 360 spin images of historical violins. Multimed. Tools Appl. 2018, 77, 28309–28332. [Google Scholar] [CrossRef]
- Dondi, P.; Lombardi, L.; Invernizzi, C.; Rovetta, T.; Malagodi, M.; Licchelli, M. Automatic Analysis of UV-Induced FluorescenceImagery of Historical Violins. ACM J. Comput. Cult. Herit. 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Fiocco, G.; Gonzalez, S.; Invernizzi, C.; Rovetta, T.; Albano, M.; Dondi, P.; Licchelli, M.; Antonacci, F.; Malagodi, M. Compositional and morphological comparison among three coeval violins made by giuseppe guarneri ‘del Gesù’ in 1734. Coatings 2021, 11, 884. [Google Scholar] [CrossRef]
- Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Poli, T.; Chiantore, O.; Nervo, M.; Piccirillo, A. Mid-IR fiber-optic reflectance spectroscopy for identifying the finish on wooden furniture. Anal. Bioanal. Chem. 2011, 400, 161–1171. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, C.; Daveri, A.; Vagnini, M.; Malagodi, M. Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: A methodological approach. Anal. Bioanal. Chem. 2017, 409, 3281–3288. [Google Scholar] [CrossRef]
- Derrick, M.; Stulik, D.; Landry, J. Infrared Spectroscopy in Conservation Science; Getty Publications: Los Angeles, CA, USA, 1999. [Google Scholar]
- Invernizzi, C.; Rovetta, T.; Licchelli, M.; Malagodi, M. Mid and near-infrared reflection spectral database of natural organic materials in the cultural heritage field. Int. J. Anal. Chem. 2018, 7823248, 1–16. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl. Phys. A Mater. Sci. Process. 2012, 106, 295–307. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, J. Fabrication of superhydrophobic wood surface with a silica/silicone oil complex emulsion. Wood Res. 2018, 63, 353–364. [Google Scholar]
- Fiocco, G.; Rovetta, T.; Gulmini, M.; Piccirillo, A.; Canevari, C.; Licchelli, M.; Malagodi, M. Approaches for detecting madder lake in multi-layered coating systems of historical bowed string instruments. Coatings 2018, 8, 171. [Google Scholar] [CrossRef]
- Weththimuni, M.L.; Canevari, C.; Legnani, A.; Licchelli, M.; Malagodi, M.; Ricca, M.; Zeffiro, A. Experimental characterization of oil-colophony varnishes: A preliminary study. Int. J. Conserv. Sci. 2016, 7, 813–826. [Google Scholar]
- Daher, C.; Paris, C.; Le Hô, A.S.; Bellot-Gurlet, L.; Échard, J.P. A joint use of Raman and infrared spectroscopies for the identification of natural organic media used in ancient varnishes. J. Raman Spectrosc. 2010, 41, 1494–1499. [Google Scholar] [CrossRef]
- Daher, C.; Pimenta, V.; Bellot-Gurlet, L. Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: Methodological approach. Talanta 2014, 129, 336–345. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mills, J.S.; White, R. Natural resins of art and archaeology their sources, chemistry, and identification. Stud. Conserv. 1977, 22, 12–31. [Google Scholar]
- Tai, B.H. Stradivari’s Varnish A Review of Scientific Findings—Part I. J. Violin Soc. Am. VSA Pap. 2007, 21, 119–144. [Google Scholar]
- Von Bohlen, A.; Meyer, F. Microanalysis of old violin varnishes by total-reflection X-ray fluorescence. Spectrochim. Acta-Part B At. Spectrosc. 1997, 52, 1053–1056. [Google Scholar] [CrossRef]
- Echard, J.P. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins. Spectrochim. Acta-Part B At. Spectrosc. 2004, 59, 1663–1667. [Google Scholar] [CrossRef]
- Malagodi, M.; Canevari, C.; Bonizzoni, L.; Galli, A.; Maspero, F.; Martini, M. A multi-technique chemical characterization of a Stradivari decorated violin top plate. Appl. Phys. A Mater. Sci. Process. 2013, 112, 225–234. [Google Scholar] [CrossRef]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium A Disctionary and Optical Microscopy of Historical Pigments; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Canevari, C.; Delorenzi, M.; Invernizzi, C.; Licchelli, M.; Malagodi, M.; Rovetta, T.; Weththimuni, M. Chemical characterization of wood samples colored with iron inks: Insights into the ancient techniques of wood coloring. Wood Sci. Technol. 2016, 50, 1057–1070. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Canevari, C.; Galli, A.; Gargano, M.; Ludwig, N.; Malagodi, M.; Rovetta, T. A multidisciplinary materials characterization of a Joannes Marcus viol (16th century). Herit. Sci. 2014, 2, 15. [Google Scholar] [CrossRef]
- Bulathsinghala, A.T.; Shaw, I.C. The toxic chemistry of methyl bromide. Hum. Exp. Toxicol. 2013, 33, 81–91. [Google Scholar] [CrossRef] [PubMed]
Area of the Mandolin | >10 | 1–10 | <1 |
---|---|---|---|
Top plate | - | K, Ca | Si, P, S, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Pb |
Shell | - | K, Ca | Si, P, S, Ti, Fe, Cu, Pb |
Restoration material on the treble side | - | Ca, Fe, Zn | S, K, Cr, Mn, Ni, Cu, Sr, Ba, Pb |
Purfling on the shell (SP) | Fe | K, Ca | Si, P, S, Ti, Cr, Mn, Cu, Zn, Sr, Pb |
Fingerboard | Fe | K, Ca | Si, P, S, Ti, Mn, Cu, Zn, Sr, Pb |
Purfling on the top plate (TP) | - | K, Ca, Fe | Si, P, S, Ti, Cr, Mn, Ni, Cu, Zn, Br, Sr, Pb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volpi, F.; Fiocco, G.; Rovetta, T.; Invernizzi, C.; Albano, M.; Licchelli, M.; Malagodi, M. New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach. Appl. Sci. 2021, 11, 11626. https://doi.org/10.3390/app112411626
Volpi F, Fiocco G, Rovetta T, Invernizzi C, Albano M, Licchelli M, Malagodi M. New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach. Applied Sciences. 2021; 11(24):11626. https://doi.org/10.3390/app112411626
Chicago/Turabian StyleVolpi, Francesca, Giacomo Fiocco, Tommaso Rovetta, Claudia Invernizzi, Michela Albano, Maurizio Licchelli, and Marco Malagodi. 2021. "New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach" Applied Sciences 11, no. 24: 11626. https://doi.org/10.3390/app112411626
APA StyleVolpi, F., Fiocco, G., Rovetta, T., Invernizzi, C., Albano, M., Licchelli, M., & Malagodi, M. (2021). New Insights on the Stradivari “Coristo” Mandolin: A Combined Non-Invasive Spectroscopic Approach. Applied Sciences, 11(24), 11626. https://doi.org/10.3390/app112411626