Signature Modes of Old and New Violins with Symmetric Anatomical Wood Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Anatomical Models of the Wood Structure
2.2.2. The Dynamic Method
3. Results and Discussions
3.1. Symmetries in the Anatomical Structure of the Plates in the Construction of Old Violins
3.2. Dynamic Analysis
3.3. Correlation between Symmetries of Wood Anatomical Structure and Signature Modes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Saitis, C.; Fritz, C.; Scavone, G.P. Sounds like Melted Chocolats: How Muzicians Conceptualize Violin Sound Richness. In Proceedings of the ISMA 2019, International Sympozium on Music Acoustics, Detmold, Germany, 13–17 September 2019; pp. 50–57. [Google Scholar]
- Tai, H.-C.; Shen, Y.-P.; Lin, J.-H.; Chung, D.-T. Acoustic evolution of old Italian violins from Amati to Stradivari. Proc. Natl. Acad. Sci. USA 2018, 115, 5926–5931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gough, C.E. Violin Acoustics. Acoust. Today 2016, 12, 22–30. [Google Scholar]
- Dünnwald, H. Deduction of objective quality parameters on old and new violins. Catgut Acoust. Soc. J. 1999, 2, 1–5. [Google Scholar]
- Saitis, C.; Fritz, C.; Scavone, G.P.; Guastavino, C.; Dubois, D. Perceptual evaluation of violins: A psycholinguistic analysis of preference verbal descriptions by experienced musicians. J. Acoust. Soc. Am. 2017, 141, 2746–2757. [Google Scholar] [CrossRef] [Green Version]
- Woodhouse, J. The acoustics of “A0-B0 mode matching” in the violin. Acust. Acta Acust. 1998, 84, 947–956. [Google Scholar]
- Woodhouse, J. On the playability of violins. Part I Reflect. Funct. Acust. 1993, 78, 125–136. [Google Scholar]
- Marshall, K.D. Modal analysis of a violin. J. Acoust. Soc. Am. 1985, 77, 695–709. [Google Scholar] [CrossRef]
- Bissinger, G. Some mechanical and acoustical consequences of the violin soundpost. J. Acoust. Soc. Am. 1995, 97, 3154. [Google Scholar] [CrossRef]
- Nadarajah, M.C. The Mechanics of the Soundpost in the Violin. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2018. [Google Scholar]
- Bissinger, G. Structural acoustics of good and bad violins. J. Acoust. Soc. Am. 2008, 124, 1764. [Google Scholar] [CrossRef]
- Jansson, E. The Tone and Tonal Quality of the Violin. In Acoustics for Violin and Guitar Makers, 4th ed.; KTH Royal Institute of Technology, TMH, Speech, Music and Hearing Webmaster: Stockholm, Sweden, 2002; Available online: https://www.speech.kth.se/music/acviguit4/part8.pdf (accessed on 14 October 2021).
- Woodhouse, J. Body vibration of the violin–What can a maker expect to control. Catgut Acoust. Soc. J. 2002, 4, 43–49. [Google Scholar]
- Carlier, C.; Alkadri, A.; Gril, J.; Brémaud, I. Revisiting the notion of “resonance wood”choice: A decompartementalised ap-proach from violin makers’opinion and perception to characterization of material properties’variability. In Wooden Musical Instruments. Different Forms of Knowledge; Book of End of WoodMusick COST ActionFP1302; Perez, M., Marconi, E., Eds.; Hal Documentation: Paris, France, 2018. [Google Scholar]
- Alm, J.F.; Walker, J.S. Time-Frequency Analysis of Musical Instruments. SIAM Rev. 2002, 44, 457–476. [Google Scholar] [CrossRef] [Green Version]
- Le Conte, S.; Le Moyne, S.; Ollivier, F. Modal analysis comparison of two violins made by A. Stradivari. In Proceedings of the Acoustics 2012 Nantes Conference, Nantes, France, 23–27 April 2012. [Google Scholar]
- Gliga, V.G.; Stanciu, M.D.; Nastac, S.M.; Campean, M. Modal analysis of violin bodies with back plates made of different wood species. BioResources 2020, 15, 7687–7713. [Google Scholar] [CrossRef]
- Mania, P.; Fabisiak, E.; Skrodzka, E. Differences in the modal and structural parameters of resonance and non-resonance wood of spruce (Picea abies). Acta Phys. Pol. A 2015, 127, 110–113. [Google Scholar] [CrossRef]
- Pyrkosz, M.; Van Karsen, C. Comparative Modal Tests of a Violin. Exp. Tech. 2013, 37, 47–62. [Google Scholar] [CrossRef]
- Dinulica, F.; Albu, C.T.; Borz, S.A.; Vasilescu, M.M.; Petriţan, I.C. Specific Structural Indexes for Resonance Norway Spruce Wood Used for Violin Manufacturing. BioResources 2015, 10, 7525–7543. [Google Scholar] [CrossRef]
- Dinulică, F.; Albu, C.-T.; Vasilescu, M.M.; Stanciu, M.D. Bark Features for Identifying Resonance Spruce Standing Timber. Forests 2019, 10, 799. [Google Scholar] [CrossRef] [Green Version]
- Dinulică, F.; Stanciu, M.D.; Savin, A. Correlation between Anatomical Grading and Acoustic–Elastic Properties of Resonant Spruce Wood Used for Musical Instruments. Forests 2021, 12, 1122. [Google Scholar] [CrossRef]
- Schwarze, F.W.M.R.; Morris, H. Banishing the myths and dogmas surrounding the biotech Stradivarius. Plants People Planet 2020, 2, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Skrodzka, E.B.; Linde, B.B.; Krupa, A. Modal Parameters of Two Violins with Different Varnish Layers and Subjective Evaluation of Their Sound Quality. Arch. Acoust. 2013, 38, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Nyman, C.D. 1.History of the Development of the Violin 2. Construction of the Violin 3. Repairs of the Violin String Instruments. Master’s Thesis, Utah State University, Logan, UT, USA, 1975; p. 750. Available online: https://digitalcommons.usu.edu/gradreports/750 (accessed on 15 June 2021).
- Fritz, C.; Curtin, J.; Poitevineau, J.; Borsarello, H.; Wollman, I.; Tao, F.-C.; Ghasarossian, T. Soloist evaluations of six Old Italian and six new violins. Proc. Natl. Acad. Sci. USA 2014, 111, 7224–7229. [Google Scholar] [CrossRef] [Green Version]
- Fritz, C.; Curtin, J.; Poitevineau, J.; Morrel-Samuels, P.; Tao, F.-C. Player preferences among new and old violins. Proc. Natl. Acad. Sci. USA 2012, 109, 760–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, C.; Curtin, J.; Poitevineau, J.; Tao, F.-C. Listener evaluations of new and Old Italian violins. Proc. Natl. Acad. Sci. USA 2017, 114, 5395–5400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buen, A. What is Old Italian Violin Timbre? In Proceedings of the Vienna Talk 2010 on Music Acoustics—“Bridging the Gaps”, Viena, Austria, 19–21 September 2010. [Google Scholar] [CrossRef]
- Tronchin, L.; Tarabusi, V. Acoustical analysis in Ancient Violins. In Proceedings of the International Symposium on Musical Acoustics, Nara, Japan, 31 March—3 April 2004; pp. 1–4. [Google Scholar]
- Johnson, E. The Acoustics of the Violin. Ph.D. Thesis, University of Salford, Lancashire, UK, 1981. [Google Scholar]
- Woodhouse, J.; Langley, R.S. Interpreting the Input Admittance of Violins and Guitars. Acta Acust. United Acust. 2012, 98, 611–628. [Google Scholar] [CrossRef]
- Fiocco, G.; Gonzalez, S.; Invernizzi, C.; Rovetta, T.; Albano, M.; Dondi, P.; Licchelli, M.; Antonacci, F.; Malagodi, M. Compositional and Morphological Comparison among Three Coeval Violins Made by Giuseppe Guarneri “del Gesù” in 1734. Coatings 2021, 11, 884. [Google Scholar] [CrossRef]
- Gough, C.E. A violin shell model: Vibrational modes and acoustics. J. Acoust. Soc. Am. 2015, 137, 1210–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gough, C. Musical Acoustics. In Springer Handbook of Acoustics; Rossing, T., Ed.; Springer: Singapore, 2007; pp. 533–667. [Google Scholar]
- Zygmuntowicz, S. Violinmaker Uses CT Scans, 3D Lasers to Hone Craft. Available online: https://www.youtube.com/watch?v=SA4yu2C2aiM (accessed on 16 November 2021).
- Gough, C. Acoustic characterization of string instruments by internal cavity measurements. J. Acoust. Soc. Am. 2021, 150, 1922. [Google Scholar] [CrossRef]
- Alonso Moral, J. From properties of free top plates, of free back plates and of ribs to properties of assembled violins. STL QPSR 1984, 25, 1–29. [Google Scholar]
- Nia, H.T.; Jain, A.D.; Liu, Y.; Alam, M.-R.; Barnas, R.; Makris, N.C. The evolution of air resonance power efficiency in the violin and its ancestors. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140905. [Google Scholar] [CrossRef] [Green Version]
- Stanciu, M.D.; Mihălcică, M.; Dinulică, F.; Nauncef, A.M.; Purdoiu, R.; Lăcătuș, R.; Gliga, G.V. X-ray Imaging and Computed Tomography for the Identification of Geometry and Construction Elements in the Structure of Old Violins. Materials 2021, 14, 5926. [Google Scholar] [CrossRef]
- Čufar, K.; Beuting, M.; Demšar, B.; Merela, M. Dating of violins—The interpretation of dendrochronological reports. J. Cult. Heritage 2017, 27, S44–S54. [Google Scholar] [CrossRef]
- Klein, P.; Pollens, S. The Technique of Dendrochronology as Applied to Violins Made by Giuseppe Guarneri del Gesù; Giuseppe Guarneridel Gesù: London, UK, 1998. [Google Scholar]
- Topham, J.; McCormick, D. A dendrochronological investigation of stringed instruments of the cremonese school (1666–1757) including “The Messiah” violin attributed to Antonio Stradivari. J. Archaeol. Sci. 2000, 27, 183–192. [Google Scholar] [CrossRef]
- Pilcher, J.R. Sample preparation, cross-dating and measurement. In Methods of Dendrochronology; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Academis Publishing: Dordrecht, The Netherlands, 1990; pp. 40–51. [Google Scholar]
- Rocaboy, F.; Bucur, V. About the physical properties of wood of twentieth century violins. J. Acoust. Soc. Am. 1990, 1, 21–28. [Google Scholar]
- Bucur, V. Acoustics of Wood; Springer: Singapore, 2006; pp. 173–196. [Google Scholar]
- Saunders, F.A. The Mechanical Action of Instruments of the Violin Family. J. Acoust. Soc. Am. 1946, 17, 169–186. [Google Scholar] [CrossRef]
- Schleske, M. Contemporary violin making. Analysis of design, materials, varnish and normal modes. Catgut Acoust. Soc. J. 2002, 4, 50–65. [Google Scholar]
Anatomical Characteristics—Mean (STDV) | |||||||
---|---|---|---|---|---|---|---|
Top Plate | Back Plate | ||||||
Studied Violins | The Width of the Annual Rings (mm) | The Width of Early Wood (mm) | The Width of Late Wood (mm) | The Proportion of Early Wood (%) | The Proportion of Late Wood (%) | The Width of the Annual Rings (mm) | The Wavelength of the Curly Fiber (mm) |
Stradivarius 1702 | 0.672 (0.363) | 0.432 (0.3) | 0.242 (0.087) | 60.787 (10.269) | 39.213 (10.269) | 1.081 (0.461) | 5.754 (1.857) |
Stainer 1716 | 2.247 (0.567) | 1.676 (0.518) | 0.496 (0.178) | 76.184 (9.152) | 23.816 (9.152) | 1.908 (0.531) | 4.021 (1.577) |
Leeb 1742 | 1.53 (0.49) | 1.148 (0.467) | 0.382 (0.122) | 73.564 (8.507) | 26.436 (8.507) | 1.246 (0.658) | 6.421 (2.422) |
Klotz 1747 | 1.251 (0.403) | 0.792 (0.304) | 0.459 (0.162) | 62.635 (8.7) | 37.365 (8.7) | 1.063 (0.902) | NA |
Babos 1920 | 1.891 (0.612) | 1.449 (0.601) | 0.442 (0.158) | 74.379 (9.942) | 25.203 (9.942) | 1.026 (0.527) | 3.946 (1.256) |
Copy Stainer | 0.985 (0.527) | 0.689 (0.45) | 0.3 (0.118) | 66.127 (11.286) | 33.873 (11.286) | 1.277 (0.297) | 4.984 (1.589) |
Unbranded | 1.327 (0.336) | 0.907 (0.293) | 0.42 (0.13) | 67.689 (8.921) | 32.311 (8.921) | 4.563 (1.105) | 4.585 (1.057) |
Gliga 1, 2020 | 0.94 (0.234) | 0.568 (0.19) | 0.372 (0.1) | 59.766 (8.388) | 40.234 (8.388) | 1.623 (0.666) | 6.731 (3.371) |
Gliga 2 | 0.977 (0.238) | 0.606 (0.190) | 0.370 (0.101) | 61.549 (8.146) | 38.450 (8.146) | 1.389 (0.734) | 4.271 (1.960) |
Gliga 3 | 1.015 (0.323) | 0.597 (0.227) | 0.422 (0.145) | 58.055 (9.293) | 41.944 (9.293) | 2.379 (0.935) | 5.397 (2.342) |
Violin | The Number of Rings | Gleichläufigkeit Correlation Coefficient (%) | |
---|---|---|---|
Right R | Left L | ||
Stradivarius Elder-Voicu 1702 | 94 * | 167 | 65.1 |
Stainer 1716 | 38 | 42 | 62.7 |
Leeb 1742 | 67 | 52 | 61.3 |
Klotz 1747 | 59 | 68 | 65.8 |
Babos 1920 | 46 | 58 | 57.4 |
Stainer Copy | 102 | 97 | 60.6 |
Unbranded | 74 | 70 | 63.2 |
Gliga 1, 2020 | 110 | 106 | 61.5 |
Gliga 2 | 91 | 95 | 63.1 |
Gliga 3 | 97 | 98 | 60.7 |
Violins | The Frequency Spectrum (Hz) AVERAGE/STDV | ||||
---|---|---|---|---|---|
f1 (A0) | f2 (CBR) | f3 (B1−) | f4 (B1+) | f5 | |
Stainer 1716 | |||||
Frequency (Hz) | 283.55 (1.77) | 389.70 (0.28) | 449.50 (0.42) | 604.95 (2.33) | 857.00 (0.0) |
Quality factor Q | 11.94 (2.03) | 14.32 (0.00) | 30.08 (2.03) | 22.28 (2.25) | 77.99 (0.90) |
Leeb 1742 | |||||
Frequency (Hz) | 282.30 (0.00) | 415.80 (0.00) | 470.70 (0.00) | 561.50 (0.00) | 685.85 (1.06) |
Quality factor Q | 17.35 (0.68) | 24.99 (0.23) | 20.69 (0.00) | 21.65 (0.45) | 24.83 (0.90) |
Klotz 1747 | |||||
Frequency (Hz) | 290.65 (1.06) | 429.50 (0.00) | 481.05 (0.49) | 572.30 (0.14) | 681.70 (0.57) |
Quality factor Q | 21.96 (2.25) | 51.09 (2.48) | 23.87 (0.45) | 44.40 (1.58) | 17.19 (1.80) |
Babos 1920 | |||||
Frequency (Hz) | 288.00 (2.69) | - | 489.40 (0.57) | 535.20 (0.57) | 661.70 (0.42) |
Quality factor Q | 14.32 (0.45) | - | 26.42 (1.35) | 42.34 (4.95) | 27.69 (4.05) |
Copy Stainer | |||||
Frequency (Hz) | 294.20 (0.00) | 389.75 (0.07) | 458.65 (2.06) | 544.30 (3.82) | 823.35 (0.49) |
Quality factor Q | 7.64 (0.00) | 43.77 (0.68) | 32.63 (0.68) | 33.42 (0.45) | 30.08 (0.23) |
Unbranded | |||||
Frequency (Hz) | 275.75 (0.49) | 409.70 (0.00) | 479.85 (0.07) | 536.70 (0.57) | 838.20 (0.28) |
Quality factor Q | 15.28 (1.80) | 49.66 (4.50) | 26.10 (6.30) | 22.44 (1.13) | 37.40 (6.53) |
Gliga 1, 2020 | |||||
Frequency (Hz) | 273.10 (0.00) | 399.40 (0.57) | 473.80 (0.00) | - | 688.10 (0.00) |
Quality factor Q | 25.46 (0.00) | 37.56 (3.60) | 20.37 (0.45) | - | 51.88 (0.00) |
Gliga 2 | |||||
Frequency (Hz) | 275.00 (0.00) | 407.00 (0.00) | 430.00 (0.00) | 523.50 (0.71) | 675.00 (33.94) |
Quality factor Q | 21.33 (1.35) | 21.65 (0.90) | 33.58 (0.68) | 26.26 (0.23) | 28.01 (0.45) |
Gliga 3 | |||||
Frequency (Hz) | 274.50 (0.71) | 440.50 (0.71) | 476.50 (19.09) | 530.20 (6.79) | 664.50 (31.82) |
Quality factor Q | 17.19 (0.00) | 35.65 (3.60) | 28.01 (0.90) | 24.19 (4.95) | 31.51 (0.45) |
Dynamic Parameters | Coefficient of Determination (R2,%) in Relation to: | ||
---|---|---|---|
Top Plate Symmetry * | Regularity of Annual Rings from Top Plate | Wavelength of Curly Fibres of Maple | |
f1 (A0) | 0.84 | 11.27 | 9.48 |
f2 (CBR) | 33.21 | 0 | 0.67 |
f3 (B1−) | 0.29 | 15.05 | 1.15 |
f4 (B1+) | 0.93 | 0.31 | 10.22 |
f5 | 0.12 | 2.11 | 4.02 |
Q (f1 (A0)) | 7.81 | 2.31 | 38.64 |
Q (f2 (CBR)) | 21.55 | 0.56 | 0.06 |
Q (f3 (B1−)) | 2.92 | 23.03 | 28.11 |
Q4 (f4 (B1+)) | 1.29 | 0 | 9.53 |
Q5 (f5) | 0.27 | 27.48 | 14.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihălcică, M.; Stanciu, M.D.; Nastac, S.M.; Dinulică, F.; Nauncef, A.M.; Roșca, I.C.; Savin, A. Signature Modes of Old and New Violins with Symmetric Anatomical Wood Structure. Appl. Sci. 2021, 11, 11297. https://doi.org/10.3390/app112311297
Mihălcică M, Stanciu MD, Nastac SM, Dinulică F, Nauncef AM, Roșca IC, Savin A. Signature Modes of Old and New Violins with Symmetric Anatomical Wood Structure. Applied Sciences. 2021; 11(23):11297. https://doi.org/10.3390/app112311297
Chicago/Turabian StyleMihălcică, Mircea, Mariana Domnica Stanciu, Silviu Marian Nastac, Florin Dinulică, Alina Maria Nauncef, Ioan Călin Roșca, and Adriana Savin. 2021. "Signature Modes of Old and New Violins with Symmetric Anatomical Wood Structure" Applied Sciences 11, no. 23: 11297. https://doi.org/10.3390/app112311297
APA StyleMihălcică, M., Stanciu, M. D., Nastac, S. M., Dinulică, F., Nauncef, A. M., Roșca, I. C., & Savin, A. (2021). Signature Modes of Old and New Violins with Symmetric Anatomical Wood Structure. Applied Sciences, 11(23), 11297. https://doi.org/10.3390/app112311297