Simulation-Based Shading Loss Analysis of a Shingled String for High-Density Photovoltaic Modules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Divided Solar Cell Circuit Modeling
2.2. Shingled PV Module Circuit Modeling
2.3. Modeling the Shading of Shingled PV Modules
3. Results and Discussion
3.1. Shading Characteristics of Shingled Strings
3.2. Shading Characteristics of Conventional Module
3.3. Shading Characteristics of Shingled PV Module
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.S. An analysis for current status and legal issues of energy transition policy. Korea Environ. Law Assoc. 2020, 42, 85–128. [Google Scholar]
- Hang, H.; Mun, J.; Kim, J. Economic benefits of integration of supplementary biopower and energy storage systems in a solar-wind hybrid system. Korean Inst. Chem. Eng. 2020, 58, 381–389. [Google Scholar]
- David, F.; Robert, M. Q4 2019/Q1 2020 Solar Industry Update; National Renewable Energy Laboratory: Golden, CO, USA, 2020. [Google Scholar]
- Kuhn, T.E.; Erban, C.; Heinrich, M.; Eisenlohr, J.; Ensslen, F.; Neuhaus, D.H. Review of technological design options for building integrated photovoltaics (BIPV). Energy Build. 2021, 231, 110381. [Google Scholar] [CrossRef]
- Pelle, M.; Lucchi, E.; Maturi, L.; Astigarraga, A.; Causone, F. Coloured BIPV technologies: Methodological and experimental assessment for architecturally sensitive areas. Energies 2020, 13, 4506. [Google Scholar] [CrossRef]
- Mau, S.; Krametz, T.; Jahna, W.; Fechner, H. Quality testing for PV-modules according to standards and performance control for supporting manufacturing. In Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7–11 June 2004; pp. 2626–2628. [Google Scholar]
- Rajput, A.S.; Rodriguez-Gallegos, C.D.; Ho, J.W.; Nalluri, S.; Aberle, A.G.; Singh, J.P. Fast extraction of front ribbon resistance of silicon photovoltaic modules using electroluminescence imaging. Sol. Energy 2019, 194, 688–695. [Google Scholar] [CrossRef]
- Jee, H.; Lee, S.; Jeong, C.; Lee, J. Electrically conductive adhesives and the shingled array cell for high density modules. J. Nanosci. Nanotechnol. 2019, 19, 1360–1363. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Park, J.S.; Oh, W.J.; Lee, J.H. Effect of laser scribing in high efficiency crystal photovoltaic cells to produce shingled photovoltaic module. J. Korean Inst. Electr. Electron. Mater. Eng. 2020, 33, 291–296. [Google Scholar]
- Park, J.; Oh, W.; Joo, J.; Yi, J.; Hong, B.; Lee, J. Design of high-power and high-density photovoltaic modules based on a shingled cell string. J. Nanosci. Nanotechnol. 2020, 20, 6996–7001. [Google Scholar] [CrossRef] [PubMed]
- Kunz, O.; Evans, R.J.; Juhl, M.M.; Trupke, T. Understanding partial shading effects in shingled PV modules. Sol. Energy 2020, 202, 420–428. [Google Scholar] [CrossRef]
- Chan, D.S.H.; Phang, J.C.H. Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. IEEE Trans. Electron Devices 1987, 34, 286–293. [Google Scholar] [CrossRef]
- Masmoudi, F.; Salem, F.B.; Derbel, N. Single and double diode models for conventional mono-crystalline solar cell with extraction of internal parameters. In Proceedings of the 13th International Multi-Conference on Systems, Signals & Devices, Leipzig, Germany, 21–24 March 2016; pp. 720–728. [Google Scholar]
- Shannan, N.M.A.A.S.; Yahaya, N.Z.; Singh, B. Single-diode model and two-diode model of PV modules: A comparison. In Proceedings of the IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 29 November–1 December 2013; pp. 210–214. [Google Scholar]
- Cibira, G.; Koscova, M. Photovoltaic module parameters acquisition model. Appl. Surf. Sci. 2014, 312, 74–80. [Google Scholar] [CrossRef]
- Park, M.; Song, J.; Moon, D.; Jeong, C.; Jee, H. Improvement in the Power of Shingled-Type Photovoltaic Module by Control of the Overlapped Width. J. Korean Phys. Soc. 2020, 77, 1040–1045. [Google Scholar] [CrossRef]
- Mittag, M.; Zech, T.; Wiese, M.; Blasi, D.; Ebert, M.; Wirth, H. Cell-to-Module (CTM) Analysis for Photovoltaic Modules with Shingled Solar Cells. In Proceedings of the IEEE 44th Photovoltaic Specialist Conference, Washington, DC, USA, 25–30 June 2018; pp. 1531–1536. [Google Scholar]
- Park, J.; Oh, W.; Park, H.; Jeong, C.; Choi, B.; Lee, J. Analysis of solar cells interconnected by electrically conductive adhesives for high-density photovoltaic modules. Appl. Surf. Sci. 2019, 484, 732–739. [Google Scholar] [CrossRef]
- Wilson, K.; Ceuster, D.D.; Sinton, R.A. Measuring the effect of cell mismatch on module output. In Proceedings of the 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; pp. 916–919. [Google Scholar]
- Maki, A.; Valkealahti, S.; Leppaaho, J. Operation of series—Connected silicon—Based photovoltaic modules under partial shading conditions. Prog. Photovolt. Res. Appl. 2011, 20, 298–309. [Google Scholar] [CrossRef]
Parameter | Measurement Value | Simulation Value |
---|---|---|
Size (cm2) | 49.14 | 49.14 |
Isc (A) | 1.937 | 1.937 |
Voc (V) | 0.669 | 0.670 |
FF (%) | 78.44 | 78.40 |
Eff (%) | 20.72 | 20.72 |
Pm (W) | 1.018 | 1.018 |
Parameter | No Shading | 5% Shading | 10% Shading | 20% Shading |
---|---|---|---|---|
Size (cm2) | 235.05 | 235.05 | 235.05 | 235.05 |
Isc (A) | 1.88 | 1.44 | 0.933 | 0.0042 |
Voc (V) | 3.34 | 3.3404 | 3.32 | 3.06 |
FF (%) | 78.35 | 86.26 | 89.48 | 40.08 |
Eff (%) | 21.00 | 17.66 | 11.82 | 0.02 |
Pm (W) | 4.93 | 4.15 | 2.77 | 0.005 |
Power ratio (%) | 100 | 84.17 | 56.18 | 0.104 |
Parameter | No Shading | 5% Shading | 10% Shading | 20% Shading |
---|---|---|---|---|
Size (cm2) | 235.05 | 235.05 | 235.05 | 235.05 |
Isc (A) | 1.90 | 1.47 | 0.943 | 0.0099 |
Voc (V) | 3.33 | 3.32 | 3.30 | 2.98 |
FF (%) | 78.45 | 85.81 | 89.38 | 61.14 |
Eff (%) | 21.25 | 17.88 | 11.85 | 0.07 |
Pm (W) | 4.99 | 4.20 | 2.78 | 0.018 |
Power ratio (%) | 100 | 84.16 | 55.71 | 0.36 |
Parameter | No Shading | 5% Shading | 10% Shading | 20% Shading |
---|---|---|---|---|
Size (cm2) | 235.05 | 235.05 | 235.05 | 235.05 |
Isc (A) | 1.88 | 1.79 | 1.70 | 1.50 |
Voc (V) | 3.34 | 3.34 | 3.33 | 3.31 |
FF (%) | 78.35 | 78.44 | 78.51 | 78.60 |
Eff (%) | 21.00 | 20.04 | 18.94 | 16.69 |
Pm (W) | 4.93 | 4.71 | 4.45 | 3.92 |
Power ratio (%) | 100 | 95.53 | 90.26 | 79.51 |
Parameter | No Shading | 5% Shading | 10% Shading | 20% Shading |
---|---|---|---|---|
Size (cm2) | 235.05 | 235.05 | 235.05 | 235.05 |
Isc (A) | 1.90 | 1.82 | 1.73 | 1.53 |
Voc (V) | 3.33 | 3.32 | 3.32 | 3.30 |
FF (%) | 78.45 | 78.04 | 78.22 | 78.38 |
Eff (%) | 21.25 | 20.20 | 19.17 | 16.93 |
Pm (W) | 4.99 | 4.74 | 4.50 | 3.97 |
Power ratio (%) | 100 | 94.98 | 90.18 | 79.55 |
Parameter | No Shading | Bottom 5 cm Shading | Bottom 10 cm Shading | Bottom 1 Cell Size Shading |
---|---|---|---|---|
Size (cm2) | 19,403.52 | 19,403.52 | 19,403.52 | 19,403.52 |
Isc (A) | 9.79 | 7.08 | 3.26 | 0.08 |
Voc (V) | 48.70 | 48.45 | 48.38 | 47.66 |
FF (%) | 77.14 | 82.56 | 86.55 | 44.78 |
Eff (%) | 18.96 | 14.61 | 7.05 | 0.09 |
Pm (W) | 367.97 | 283.50 | 136.88 | 1.777 |
Power ratio (%) | 100 | 77.04 | 37.19 | 0.48 |
Parameter | No Shading | 10% Shading | 20% Shading | 30% Shading | 40% Shading | 50% Shading |
---|---|---|---|---|---|---|
Size (cm2) | 20,763.6 | 20,763.6 | 20,763.6 | 20,763.6 | 20,763.6 | 20,763.6 |
Isc (A) | 10.73 | 10.66 | 10.65 | 10.7 | 10.7 | 10.66 |
Voc (V) | 44.85 | 44.61 | 44.3 | 43.9 | 43.17 | 22.65 |
FF (%) | 80.07 | 67.44 | 51.6 | 39.44 | 39.96 | 76.2 |
Eff (%) | 18.57 | 15.45 | 11.73 | 8.93 | 8.89 | 8.87 |
Pm (W) | 385.58 | 320.8 | 243.67 | 185.44 | 184.7 | 184.18 |
Power ratio (%) | 100 | 83.19 | 63.19 | 48.09 | 47.9 | 47.76 |
Parameter | No Shading | 10% Shading | 20% Shading | 30% Shading | 40% Shading | 50% Shading |
---|---|---|---|---|---|---|
Size (cm2) | 20,763.6 | 20,763.6 | 20,763.6 | 20,763.6 | 20,763.6 | 20,763.6 |
Isc (A) | 11.03 | 11.02 | 11.02 | 11.02 | 11.02 | 11.02 |
Voc (V) | 45.44 | 45.20 | 44.89 | 44.43 | 43.59 | 22.39 |
FF (%) | 77.75 | 65.32 | 49.33 | 38.64 | 39.29 | 76.37 |
Eff (%) | 18.77 | 15.67 | 11.89 | 9.10 | 9.09 | 9.09 |
Pm (W) | 389.869 | 325.5 | 247 | 189.11 | 188.9 | 188.74 |
Power ratio (%) | 100 | 83.48 | 63.35 | 48.50 | 48.45 | 48.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.; Jee, H.; Park, Y.; Lee, J. Simulation-Based Shading Loss Analysis of a Shingled String for High-Density Photovoltaic Modules. Appl. Sci. 2021, 11, 11257. https://doi.org/10.3390/app112311257
Bae J, Jee H, Park Y, Lee J. Simulation-Based Shading Loss Analysis of a Shingled String for High-Density Photovoltaic Modules. Applied Sciences. 2021; 11(23):11257. https://doi.org/10.3390/app112311257
Chicago/Turabian StyleBae, Jaesung, Hongsub Jee, Yongseob Park, and Jaehyeong Lee. 2021. "Simulation-Based Shading Loss Analysis of a Shingled String for High-Density Photovoltaic Modules" Applied Sciences 11, no. 23: 11257. https://doi.org/10.3390/app112311257
APA StyleBae, J., Jee, H., Park, Y., & Lee, J. (2021). Simulation-Based Shading Loss Analysis of a Shingled String for High-Density Photovoltaic Modules. Applied Sciences, 11(23), 11257. https://doi.org/10.3390/app112311257