Usage of Barkhausen Noise for Assessment of Corrosion Damage on Different Low Alloyed Steels
Abstract
:1. Introduction
2. Materials and Methods
3. Results of Experiments and Their Discussion
3.1. Observations of Corrosion Damage
3.2. MBN Measurements
- Decreases in size of non-corroded particles in the corroded layer producing MBN pulses of lower amplitude [9];
- Increasing gap between the sensor and the non-corroded matrix as a result of attenuation of magnetic field in the sample during surface magnetisation (decreases rate of change of magnetic field in time-dH/dτ [24]);
- Increasing height of surface irregularities and therefore worsen condition for pulses acquisition [20];
- Corroded layer, which can be considered as a barrier which attenuates the MBN pulses originating from non-corroded matrix during their propagation towards the sensor.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anania, L.; Badalà, A.; D’Agata, G. Damage and collapse mode of existing post tensioned precast concrete bridge: The case of Petrulla viaduct. Eng. Struct. 2018, 162, 226–244. [Google Scholar] [CrossRef]
- Antunes, R.A.; Ichikawa, R.U.; Martinez, L.G.; Costa, I. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests. Int. J. Corros. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Li, S.; Hu, P.; Zhao, X.; Chen, K.; Li, J. Atmospheric corrosion performance of wire rope sling in a sulfur dioxide-polluted environment. Adv. Mech. Eng. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Broughton, K.J.; Giannopolous, A. Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams. NDT E Int. 2001, 34, 107–113. [Google Scholar] [CrossRef]
- Peng, P.-C.; Wang, C.-Y. Use of gamma rays in the inspection of steel wire ropes in suspension bridges. NDT E Int. 2015, 75, 80–86. [Google Scholar] [CrossRef]
- Christen, R.; Bergamini, A.; Motavalli, M. Influence of steel wrapping on magneto-inductive testing of the main cables of suspension bridges. NDT E Int. 2009, 42, 22–27. [Google Scholar] [CrossRef]
- Cao, Y.N.; Zhang, D.L.; Xu, D.G. The state-of-art of quantitative testing of wire rope. Nondestruct. Test. 2005, 27, 91–95. [Google Scholar]
- Li, D.; Yang, W.; Zhang, W. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization. Ultrason. 2017, 77, 22–31. [Google Scholar] [CrossRef]
- Neslušan, M.; Bahleda, F.; Minárik, P.; Zgútová, K.; Jambor, M. Non-destructive monitoring of corrosion extent in steel rope wires via Barkhausen noise emission. J. Magn. Magn. Mater. 2019, 484, 179–187. [Google Scholar] [CrossRef]
- Jiles, D. Introduction to Magnetism and Magnetic Materials, 3rd ed.; Taylor & Francis Group: New York, NY, USA, 2016. [Google Scholar]
- Chikazumi, S. Physics of Ferromagnetism, 2nd ed.; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Liu, J.; Tian, G.Y.; Gao, B.; Zeng, K.; Zheng, Y.; Chen, J. Micro-macro characteristics between domain wall motion and magnetic Barkhausen noise under tensile stress. J. Magn. Magn. Mater. 2020, 493, 165719. [Google Scholar] [CrossRef]
- Sorsa, A.; Santa-Aho, S.; Wartiainen, J.; Suominen, L.; Vippola, M.; Leiviskä, K. Effect of Shot Peening Parameters to Residual Stress Profiles and Barkhausen Noise. J. Nondestruct. Eval. 2018, 37, 10. [Google Scholar] [CrossRef] [Green Version]
- Kypris, O.; Nlebedim, I.C.; Jiles, D.C. Measuring stress variation with depth using Barkhausen signals. J. Magn. Magn. Mater. 2016, 407, 377–395. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Neslušan, M.; Minárik, P.; Čilliková, M.; Kolařík, K.; Rubešová, K. Barkhausen noise emission in tool steel X210Cr12 after semi-solid processing. Mater. Charact. 2019, 157, 109891. [Google Scholar] [CrossRef]
- Gatelier-Rothea, C.; Chicois, J.; Fougeres, R.; Fleischmann, P. Characterization of pure iron and (130 p.p.m.) carbon–iron binary alloy by Barkhausen noise measurements: Study of the influence of stress and microstructure. Acta Mater. 1998, 46, 4873–4882. [Google Scholar] [CrossRef]
- Ktena, A.; Hristoforou, E.; Gerhardt, G.J.L.; Missell, F.P.; Landgraf, F.J.G.; Rodrigues, D.L.; Alberteris-Campos, M. Barkhausen noise as a microstructure characterization tool. Phys. B Condens. Matter 2014, 435, 109–112. [Google Scholar] [CrossRef]
- Pitoňák, M.; Neslušan, M.; Minárik, P.; Čapek, J.; Zgútová, K.; Jurkovič, M.; Kalina, T. Investigation of Magnetic Anisotropy and Barkhausen Noise Asymmetry Resulting from Uniaxial Plastic Deformation of Steel S235. Appl. Sci. 2021, 11, 3600. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Z.; Chen, J.; Qi, X. The effects of the structure characteristics on Magnetic Barkhausen noise in commercial steels. J. Magn. Magn. Mater. 2018, 451, 276–282. [Google Scholar] [CrossRef]
- Zgútová, K.; Pitoňák, M. Attenuation of Barkhausen Noise Emission due to Variable Coating Thickness. Coatings 2021, 11, 263. [Google Scholar] [CrossRef]
- Minárik, P. EBSD Observation of Low Alloyed Steels of Variable Yield Strength; Charles University: Prague, Czech Republic, 2021. [Google Scholar]
- STN EN ISO 9227 Corrosion Tests in Artificial Atmospheres—Salt SprayTests, 4th ed.; Slovak Technical Standard: Bratislava, Slovakia, 2017; p. 180.
- Varga, R. Domain Walls and Their Dynamics, 1st ed.; Pavol Jozef Šafárik University: Košice, Slovakia, 2014. [Google Scholar]
- Bayramoglu, S.; Gür, C.H.; Alexandrov, I.V.; Abramova, M.M. Characterization of ultra-fine grained steel samples produced by high pressure torsion via magnetic Barkhausen noise analysis. Mater. Sci. Eng. A 2010, 527, 927–933. [Google Scholar] [CrossRef]
- Sakamoto, H.; Okada, M.; Homma, M. Theoretical analysis of Barkhausen noise in carbon steels. IEEE Trans. Magn. 1987, 23, 2236–2238. [Google Scholar] [CrossRef]
- Vashista, M.; Moorthy, V. On the shape of the magnetic Barkhausen noise profile for better revelation of the effect of microstructures on the magnetisation process in ferritic steels. J. Magn. Magn. Mater. 2015, 393, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Yamaura, S.; Furuya, Y.; Watanabe, T. The effect of grain boundary microstructure on Barkhausen noise in ferromagnetic materials. Acta Mater. 2001, 49, 3019–3027. [Google Scholar] [CrossRef]
- Zgútová, K.; Neslušan, M.; Kolářik, K.; Šrámek, J. Non-destructive evaluation of stress state of the highway bridge via Barkhausen noise technique. In Proceedings of the 7th International Conference on Mechanics and Materials in Design, Albufeira, Portugal, 11–15 June 2017. [Google Scholar]
- Neslušan, M.; Bahleda, F.; Moravčík, M.; Zgútová, K.; Pastorek, F. Assessment of Tendon Prestressing after Long-Term Service via the Barkhausen Noise Technique. Materials 2019, 12, 3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Yield Strength (MPa) | Trade Mark | Fe | C | Mn | Si | P | S | Al | Nb + Ti |
---|---|---|---|---|---|---|---|---|---|
235 | S235 | bal. | 0.22 | 1.6 | 0.05 | 0.05 | 0.05 | - | - |
700 | MC700 | bal. | 0.05 | 1.8 | 0.02 | 0.01 | 0.002 | 0.034 | 0.21 |
1100 | MC1100 | bal. | 0.15 | 1.8 | 0.5 | 0.02 | 0.005 | 0.15 | - |
1 | 2 | 4 | 6 | 8 | 11 | 14 | 18 | 22 | 27 | 34 | 41 | 48 | 55 | 61 | 69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastorek, F.; Decký, M.; Neslušan, M.; Pitoňák, M. Usage of Barkhausen Noise for Assessment of Corrosion Damage on Different Low Alloyed Steels. Appl. Sci. 2021, 11, 10646. https://doi.org/10.3390/app112210646
Pastorek F, Decký M, Neslušan M, Pitoňák M. Usage of Barkhausen Noise for Assessment of Corrosion Damage on Different Low Alloyed Steels. Applied Sciences. 2021; 11(22):10646. https://doi.org/10.3390/app112210646
Chicago/Turabian StylePastorek, Filip, Martin Decký, Miroslav Neslušan, and Martin Pitoňák. 2021. "Usage of Barkhausen Noise for Assessment of Corrosion Damage on Different Low Alloyed Steels" Applied Sciences 11, no. 22: 10646. https://doi.org/10.3390/app112210646
APA StylePastorek, F., Decký, M., Neslušan, M., & Pitoňák, M. (2021). Usage of Barkhausen Noise for Assessment of Corrosion Damage on Different Low Alloyed Steels. Applied Sciences, 11(22), 10646. https://doi.org/10.3390/app112210646