Simulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam
Abstract
:1. Introduction
2. Numerical Model: Material Region
2.1. Main Assumptions
2.2. Pyrolysis
2.3. Mass Conservation
2.4. Momentum Conservation
2.5. Energy Conservation
3. Numerical Model: Environment Region
3.1. Continuity Equation
3.2. Momentum Conservation
3.3. Energy Conservation
3.4. Species Transport Equations
3.5. Ideal Gas
3.6. Combustion Model
3.7. Turbulence Model
3.8. Radiation Model
4. Numerical Model: Interface
5. Results
5.1. Hydrogen vs. Methane Flames
5.2. Wood Log Combustion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Latin Letters: | |
identity tensor | |
permeability tensor [m | |
strain rate tensor [s | |
thermal conductivity tensor [W m K | |
gravity field [m s | |
position vector [m] | |
thermal radiation flux [J m s | |
average velocity [m s | |
Janaf coefficients | |
A | chemical species |
Arrhenius law pre-exponential factor | |
Sutherland coefficients | |
Boussinesq approximation coefficients | |
specific heat at constant pressure [J kg K | |
D | mass diffusivity [m s |
Arrhenius law activation energy [J mol | |
mass fraction of sub-phase j in phase i | |
f | puffing frequency [Hz] |
h | specific absolute enthalpy [J kg |
k | turbulent kinetic energy [J] |
macroscopic and microscopic characteristic lengths [m] | |
mean molar mass [kg mol | |
Arrhenius law parameters | |
number of gaseous and solid species | |
p | average pressure [Pa] |
number of sub-phases in the solid phase i | |
Q | heat flux [J m s |
R | perfect gas constant [J mol K |
s | generic solid phase |
T | average temperature [K] |
time period [s] | |
y | species mass fraction |
Greek Letters: | |
stress tensor [N m | |
thermal diffusivity [m s | |
volume fraction | |
dynamic viscosity [Pa s] | |
mass stoichiometric coefficient | |
pyrolysis production rate of species k [kg m s | |
total pyrolysis gas production rate [kg m s | |
average density [kg m | |
overall pyrolysis advancement | |
advancement of pyrolysis reaction j within phase i | |
combustion rate of reaction of the specie k [kg m s | |
Subscripts and Superscripts: | |
combustion | |
effective | |
f | fluid |
g | gas |
i | index for the solid phases |
j | index for the sub-phases produced from pyrolysis |
k | index for the gaseous species |
m | modified |
power law | |
s | solid |
sub-grid scale | |
simulation | |
w | wood |
z | index for the combustion chemical reactions |
Acronyms: | |
Large Eddy Simulation | |
Local Thermal Equilibrium | |
Porous material Analysis Toolbox based on OpenFoam | |
Representative Elementary Volume |
References
- Östman, B.; Brandon, D.; Frantzich, H. Fire safety engineering in timber buildings. Fire Saf. J. 2017, 91, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Cox, G.; Moss, J. Fire science and aircraft safety. In Proceedings of the AGARD Conference Proceedings, The Hague, The Netherlands, 8–12 May 1989. [Google Scholar]
- Mouritz, A.P.; Gibson, A.G. Fire Properties of Polymer Composite Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 143. [Google Scholar]
- Dasari, A.; Yu, Z.Z.; Cai, G.P.; Mai, Y.W. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 2013, 38, 1357–1387. [Google Scholar] [CrossRef]
- Delichatsios, M.; Paroz, B.; Bhargava, A. Flammability properties for charring materials. Fire Saf. J. 2003, 38, 219–228. [Google Scholar] [CrossRef]
- Fateh, T.; Richard, F.; Batiot, B.; Rogaume, T.; Luche, J.; Zaida, J. Characterization of the burning behavior and gaseous emissions of pine needles in a cone calorimeter—FTIR apparatus. Fire Saf. J. 2016, 82, 91–100. [Google Scholar] [CrossRef]
- White, R.H.; Dietenberger, M.A. Fire safety. In Wood Handbook: Wood as an Engineering Material; General Technical Report FPL; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999; Volume 113, pp. 17.1–17.16. [Google Scholar]
- Global, F. fireFoam. Available online: http://code.google.com/p/firefoam-dev/ (accessed on 14 September 2021).
- Li, Y.Z.; Huang, C.; Anderson, J.; Svensson, R.; Ingason, H.; Husted, B.; Runefors, M.; Wahlqvist, J. Verification, Validation and Evaluation of fireFoam as a Tool for Performance Design. 2017. Available online: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1166638 (accessed on 14 September 2021).
- Zamorano, R. fireFoam (CFD Solver) Validation in Compartment Fire Scenario Using High Resolution Data. 2018. Available online: https://www.semanticscholar.org/paper/Firefoam-(CFD-solver)-validation-in-compartment-Zamorano/bd0ba6c49d5073adc6379008b56ec9182c1ec164 (accessed on 14 September 2021).
- Trouvé, A.; Wang, Y. Large eddy simulation of compartment fires. Int. J. Comput. Fluid Dyn. 2010, 24, 449–466. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Blondeau, J.; Jeanmart, H. Biomass pyrolysis at high temperatures: Prediction of gaseous species yields from an anisotropic particle. Biomass Bioenergy 2012, 41, 107–121. [Google Scholar] [CrossRef]
- Nunn, T.; Howard, J.; Longwell, J.; Peters, W. Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Ind. Eng. Chem. Process. Des. Dev. 1985, 24, 844–852. [Google Scholar] [CrossRef]
- Di Blasi, C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 2008, 34, 47–90. [Google Scholar] [CrossRef]
- Chan, W.; Kelbon, M.; Krieger, B. Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel 1985, 64, 1505–1513. [Google Scholar] [CrossRef]
- Miller, R.; Bellan, J. A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics. Combust. Sci. Technol. 1997, 126, 97–137. [Google Scholar] [CrossRef]
- Ranzi, E.; Cuoci, A.; Faravelli, T.; Frassoldati, A.; Migliavacca, G.; Pierucci, S.; Sommariva, S. Chemical kinetics of biomass pyrolysis. Energy Fuels 2008, 22, 4292–4300. [Google Scholar] [CrossRef]
- Lachaud, J.; Magin, T.; Cozmuta, I.; Mansour, N. A short review of ablative-material response models and simulation tools. In Proceedings of the 7th European Symposium on Aerothermodynamics, SP-692, European Space Agency, Noordwijk, The Netherlands, 9–12 May 2011; pp. 1–12. [Google Scholar]
- Lachaud, J.; Mansour, N. Porous-material analysis toolbox based on OpenFOAM and applications. J. Thermophys. Heat Transf. 2014, 28, 191–202. [Google Scholar] [CrossRef]
- Lachaud, J.; van Eekelen, T.; Scoggins, J.; Magin, T.; Mansour, N. Detailed chemical equilibrium model for porous ablative materials. Int. J. Heat Mass Transf. 2015, 90, 1034–1045. [Google Scholar] [CrossRef]
- Lachaud, J.; Scoggins, J.; Magin, T.; Meyer, M.; Mansour, N. A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures. Int. J. Heat Mass Transf. 2017, 108, 1406–1417. [Google Scholar] [CrossRef]
- Favre, A. Turbulence: Space-time statistical properties and behavior in supersonic flows. Phys. Fluids 1983, 26, 2851–2863. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Perić, M.; Street, R.L. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2002; Volume 3. [Google Scholar]
- Erlebacher, G.; Hussaini, M.Y.; Speziale, C.G.; Zang, T.A. Toward the large-eddy simulation of compressible turbulent flows. J. Fluid Mech. 1992, 238, 155–185. [Google Scholar] [CrossRef] [Green Version]
- Chase, M. NIST-JANAF Thermochemical Tables. 1998. Available online: https://janaf.nist.gov/ (accessed on 14 September 2021).
- Shen, V.K.; Siderius, D.W.; Krekelberg, W.P.; Hatch, H.W. NIST Standard Reference Simulation Website-SRD 173. NIST Standard Reference Database Number 173; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [CrossRef]
- Poling, B.E.; Prausnitz, J.M.; O’connell, J.P. Properties of Gases and Liquids; McGraw-Hill Education: New York City, NY, USA, 2001. [Google Scholar]
- Xiao, H.; Jenny, P. A consistent dual-mesh framework for hybrid LES/RANS modeling. J. Comput. Phys. 2012, 231, 1848–1865. [Google Scholar] [CrossRef]
- Sierens, R.; Demuynck, J.; Paepe, M.D.; Verhelst, S. Heat Transfer Comparison between Methane and Hydrogen in a Spark Ignited Engine. 2010. Available online: https://juser.fz-juelich.de/record/135724/files/TA3_3_Sierens.pdf (accessed on 14 September 2021).
- Mandin, P.; Most, J. Characterization of the puffing phenomenon on a pool fire. Fire Saf. Sci. 2000, 6, 1137–1148. [Google Scholar] [CrossRef] [Green Version]
- Beyler, C.L. Fire plumes and ceiling jets. Fire Saf. J. 1986, 11, 53–75. [Google Scholar] [CrossRef]
- Pretrel, H.; Audouin, L. Periodic puffing instabilities of buoyant large-scale pool fires in a confined compartment. J. Fire Sci. 2013, 31, 197–210. [Google Scholar] [CrossRef]
- Lachaud, J.; Meurisse, J. Porous Material Analysis Toolbox Based on OpenFOAM. Available online: http://pato.ac/ (accessed on 14 September 2021).
CH | 5.2 × 10 | 0 | 14,906 |
H | 4.74 × 10 | 0 | 10,064 |
j | Hemicellulose | |||||
---|---|---|---|---|---|---|
1 | 0.40 | 7.94 × 10 | 195,000 | 1 | 0 | |
2 | 0.30 | 1.26 × 10 | 106,000 | 1 | 0 | |
Cellulose | ||||||
1 | 0.75 | 7.94 × 10 | 202,650 | 1 | 0 | |
2 | 0.16 | 1.26 × 10 | 245,000 | 1 | 0 | |
Lignin | ||||||
1 | 0.66 | 6.0 × 10 | 120,000 | 1 | 0 | |
Water | ||||||
1 | 1 | 5.13 × 10 | 86,000 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scandelli, H.; Ahmadi-Senichault, A.; Richard, F.; Lachaud, J. Simulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam. Appl. Sci. 2021, 11, 10570. https://doi.org/10.3390/app112210570
Scandelli H, Ahmadi-Senichault A, Richard F, Lachaud J. Simulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam. Applied Sciences. 2021; 11(22):10570. https://doi.org/10.3390/app112210570
Chicago/Turabian StyleScandelli, Hermes, Azita Ahmadi-Senichault, Franck Richard, and Jean Lachaud. 2021. "Simulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam" Applied Sciences 11, no. 22: 10570. https://doi.org/10.3390/app112210570
APA StyleScandelli, H., Ahmadi-Senichault, A., Richard, F., & Lachaud, J. (2021). Simulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam. Applied Sciences, 11(22), 10570. https://doi.org/10.3390/app112210570